
MITOCW | mithst_508f02_lec1a.mp4

The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional
information about our license and MIT OpenCourseWare in general is available at ocu.mit.edu.

GEORGE

CHURCH:

OK. We're getting ready. And let's go. OK. So welcome to the first class of BIOE101 or biophysics 101 or HST.508
or Genetics 224. You can see that this is a truly interdisciplinary class, and I hope that's going to be one of its
strengths. It has been in the past.

I hope that you get to know some of your colleagues in this room or maybe in the other half of this class, which is
taught on the medical school campus, because they could be some of your greatest assets in years to come. This
course-- basically, if you cannot, for some reason, on a particular day, make this meeting at 5:30, you have the
option of going at noon over in the Canon room, or you have the option of tuning in to the video, which is
intended mainly for the distance education students but also serves as a backup in case one of you gets sick or is
out of town or something like that. So that's what's going on right there, is that we put this on our internet site.
It's synchronized to the PowerPoint slides. You should have PowerPoint handouts right now.

This course, as stated on the website and on this first slide, is based, essentially, entirely on six problem sets and
a course project. In the past, the students and I have had a great time in the course projects. We see, really, the
cutting edge of computational biology. And the six problem sets are really intended to get you up to speed so
that you are as close as possible to a publication-grade computational biology project, which, generally speaking,
is collaborative, involving two or more people. But you can do it solo as well. There'll be more details on the
website and also in your sections.

You're also free to work with other people to use any resources you want for the problem sets. I would just ask
that you-- however you answer the question, whether it comes just purely from your head or from collaboration
or from some website, that you just say for each problem, just briefly, where you got the answer. This is just a
good academic discipline for acknowledging your sources.

This course is intended to be an introductory course, introductory to almost every subject that it combines. It has
minor prerequisites. And those who feel that they are a little weak in either molecular biology, statistics, or
computing, there will be classes in addition to the regular sections which will address these intensively, the
especially at the beginning of the course.

Then the sections themselves will be crafted so that they are directed at people who feel strong in biology and
slightly weaker in computing. So the focus will be on getting the computing up from-- more or less from scratch.
And those that are stronger, say, in computing, then there'll be sections on advanced topics which will fit in with
the course.

By the middle of the course, almost all the sections will be very close to identical. But there still will be that slight
difference. We will try to provide mechanisms by which you can interact with colleagues that have different
strengths but similar interests so that you can get together on problem sets and the projects. You shouldn't feel it
was essential. It's an opportunity, not an obligation.



It's important you hand in your questionnaire immediately after class so that we can assign you the sections. The
sections will-- the sections will be the way that you get information and the way that you interact with the
teaching fellow who will be responsible for grading your problem sets. So that teaching fellow will interact with
you on all six problem sets in your project, and so you should get to know that person very well.

And I'm very indebted to this crew, by the way, which is up here at the top. Suzanne [? Camilli ?] is the head
teaching fellow this year. Many of them-- she was a teaching fellow last year. And many of these-- almost all of
these teaching fellows have taken this course last year.

That's most of the bureaucratic aspects of it unless there are some questions. Please feel free to interrupt at any
time. This can be interactive if you want it to be. I can set aside enough time for that. You're certainly also
welcome to come to me before class, after class, and during the break, and we can even set up additional times.
Questions? Yes.

AUDIENCE: The extra sections, those are more filling in the background.

GEORGE

CHURCH:

That's right. There will be this--

AUDIENCE: There seems to be only one, which is Thursday evening.

GEORGE

CHURCH:

So the question is about extra sessions. There will be a schedule of all the sections evolving on the website
within the next day or two. Depending on what your questionnaires show up, there will probably be three or four
extra sections within the first couple of weeks.

AUDIENCE: And how do we [INAUDIBLE]?

GEORGE

CHURCH:

Through your section head. If you put your email address, it will allow the section head teaching fellow to contact
you, or you can contact any of them if no one contacts you. OK.

So the overview for the course-- this is constrained to fit into the calendar of both Harvard and MIT. It also tries to
achieve the goal of keeping the Division of Continuing Education students so that they only have to come in for
one day a week, which is a considerable plus section. Some of them choose to have section the same day. And
some of them have considerable commutes. So that determines the timing of this.

The topics-- we'll have two introductory lectures. We'll actually cover pretty interesting topics for introductory
thematically, one on computing followed by one on biology, although both of them and the whole course is on
computational biology and systems biology. Then as another way of focusing, we'll have a series of six lectures,
two on DNA, two on RNA, and two on proteins or proteomics, which reflects the central dogma of molecular
biology where DNA encodes RNA which encodes proteins.

But much more so, it's telling us about the flow of information that we need to establish experimentally and in
terms of modeling that allows us to do functional genomics, and hence, systems biology, and to mine the
datasets which are on everyone's attention right now. Then finally, three topics which really focus on the
overarching theme of the whole course, which is on networks and systems biology.



And these really cover the gamut of network analysis on cellular all the way through ecological scale modeling in
order to see how we integrate various data types. Then comes the very interesting section of the course, three of
these two-hour sessions where you get to present to me the topics that you're excited about, how you have taken
the course material problem sets and so forth and incorporated into your view of what's exciting and then
present to all of us that information as team or individual presentations.

OK. That's the overview for the whole course. Today's story-- I try to make this somewhat a narrative and with
themes. So we're going to toggle back and forth throughout the lecture on living systems and computational
systems-- similarities, differences, how we can use one to tell us something about the other.

In particular, we'll focus in on the aspect of living systems which is fairly unique, which is self-assembly and
replication. These are put in the context of another theme for today, which is discrete versus continuous data,
discrete versus continuous modeling of data. Since this is an introductory lecture and we want to get you warmed
up, I'm going to try to illustrate as much as possible with minimal examples, small examples, so you can see it all
in one page or all in one line, even, examples of minimal life-- things that illustrate the minimal aspects of life
replication, mainly, and minimal programs, which allow us to analyze some key aspects of modeling living
systems.

Some of the key aspects are catalysis and replication. And here we'll use differential equations. This will be quite,
I think, an interesting approach to it, painless, and exciting the way it connects to biology. And then after talking
about that replication in the context of differential equations, we'll introduce [? directed ?] graphs, which indicate
how growth occurs in a pedigree, not just growth in exponential mode. And then finally, we'll connect this to the
issues that surround single molecules, which are actually very significant in biological systems and involve a
different type of analysis than the continuous functions that we will use in ordinary differential equations.

When we analyze errors, either in data or variance in biological populations, we use statistics, broadly speaking,
that fall under bell curve statistics-- actually, more than that. And overall, the entire-- the theme that unites all of
biology and most of the course, and this lecture in particular, is the idea that many of these functions in
biological systems can be under selection, experimental selection in the laboratory in order to obtain an optimal
growth rate or some other aspect of optionality. You generally will do well embedding the biological system
either as optimal or can be made optimal for a particular task.

OK. Now, I'm just poking fun at the number for this course. It is also an intrinsically important symbol for the 0's
and 1's that occur in all of our computers and under underlie the way we either deal with discrete data or make
continuous data appear to be discrete. We'll start with the biological entities most similar to the 0's and 1's that
make your computers hum. And these are the nucleotides of DNA and RNA, A, C, G, and T, or A, C, G, and U in
the case of RNA.

And of course, all of this is symbols. The A stands for adenine. And adenine, of course, doesn't look like an A. It
looks like some electron density. And we often represent it with chemical formula you'll see in subsequent slides.
But here in slide 5, we're talking about, schematically, A, C, G, and T being-- A being represented by the two-digit
binary number 00, and C 01 and 10 and 11. So you can see that two digits isn't quite enough to encode the four
nucleotides which are strung together where you might have 3 billion such nucleotides making up one of your
two human genomes.



Now, things get a little bit more complicated once this digital 3 billion nucleotides in your genome starts being
turned into molecules that actually do the work of the cell, the work of your body, which is RNA and proteins. This
is an example of one of the primary transcripts common to all living organisms that we know of. This is a transfer
RNA.

I actually participated in solving this complicated structure in the '70s. And this is color coded, the DNA sequence
that encodes this particular RNA. And when the RNA is made, it folds up into this three-dimensional structure
which you see rotating here. This is actually a stereo image, which, if you cross your eyes in the right way, will
appear to be even more three-dimensional than it is there. You will learn more about this later in the course if
you don't know already.

But the point is that this goes from a 5-prime end at blue all the way out to the 3-prime end in red. And it has to
fold in this manner. It reproducibly folds in this manner, and it has to stay in order to perform its function, which
is actually translating from DNA-- sorry-- from RNA sequences into protein. But what we're illustrating here is the
relationship between this discrete binary digital code and DNA and the more continuous code that you have,
which is the x, y, and z-coordinates of the atoms-- the continuous nature of the probability distribution of
electrons around each of those atoms and the continuous nature of its position in space and its various binding
constants, affinities for other molecules in the cell.

Let me just take those two examples, the DNA sequence and the three-dimensional structure for the transfer
RNA that it encodes, and expand upon them a little bit or give other examples. We have a sequence. In the
previous slide, I showed a sequence of 76 nucleotides. On the left-hand side are examples of discrete concepts,
concepts which are very naturally encoded in a discrete digital way, and then as close as we can get to the
continuous version of that.

So a continuous version of a sequence might be a probability of a sequence. In other words, at the first position,
if you look at a population of sequences-- the number of different tRNAs, the number of different people in this
room-- it may not be that there's always an A at position 1. It could be that it's got a different probability in
different people. So you represent that as a probability A, C, G, and T. It's a vector with four numbers in it. That's
more continuous.

Similarly, we have digital analog devices in the instruments that collect the data that you'll be working with in
this course. Integration can be represented, practically speaking, as a sum of small steps. When we're talking
about, say, a neural network that's responsible for some of your thoughts or a regulatory network that causes
homeostasis in your body, biologists casually often reflect on these as being on and off. It's a good
approximation. It allows you to make very simple diagrams.

But you must remember that many of these are actually composed of gradients or graded responses. Not
necessarily all are [? on/off. ?] Some of these gradients or graded responses have this sigmoid shape that I've
drawn as an icon down the middle of this, separating the discrete from the continuous. And so for all intents and
purposes, things tend to hang out either off here at the bottom or on at the top of the concentration limits or the
signal limits if the signal is electrical or so forth.



Similarly, we'll have examples where some cells will be-- we'll have a field of cells which are either on or off,
effectively very extreme ends of this. But because there's a mixture of them, if you were to mush them up and
measure some property of them, it would appear to be somewhere intermediate. So this is an alarm that should
be going off every time you see mixtures that they may be composed of-- you may need-- to model it, you may
have to model it as a population, each individual behaving as more extreme than the average with very few in the
middle. Similarly with mutations, you might say that certain mutations are essential for life. Others are neutral.
They have no effect. Others, more gray zone, are conditional.

OK. Just a point of orientation for how we can describe not only the bits, the discrete or digital components of this
course. But also, many of these prefixes are useful for describing the continuous as well. But you can see this--
many of you will be familiar with these. All of you, I'm sure, have access to computers, and so you've used terms
like kilobyte and megabyte and gigabyte.

Technically, 2 to the 10th power is 1,024, not 1,000, and so it shouldn't be referred to as kilo. But for most intents
and purposes, these are so close to 1,000 or a million or a billion that they're used interchangeably. But this is
the official standard here.

And certainly for the continuous numbers that we'll be talking about, the order we'll have is 10 to the plus 3 will [?
be kilo. ?] 10 to the minus 3 will be milliliters. Mega, micro, giga, nano, and so on, all the way up. [? For the ?]
numbers, atom mole is getting-- zeptomole is getting close to the limit where you're getting close to single
molecules. Petabyte is getting close to the limit of where your computers can go right now.

Why is it important to have defined quantitative measures? Why can't we just casually say, oh, yeah, it's a long
time rather than seconds, or it's really long distance to Harvard Square in meters? Why do we have to use
meters, kilograms, moles, degrees, Kelvin, candelas, amperes? These are the seven basic international system
units from which most of the other units that you use in science are derived. In a certain sense, there is some
inter-convertibility even within these.

We'll be talking about precision a little bit at the end of today's class and throughout the course. In fact, a theme
today is that even things that are represented digitally are not-- in order to represent things digitally, there are
approximations that are made. And you should always question what those assumptions are when you make an
approximation. The precision for some of these units of measure-- for example, the time scale measured in
seconds-- can be as precise as 14 significant decimal digits.

Now, you may wonder from time to time in the course why biology doesn't have 14 significant figures. But I will
leave that up as an exercise for one of your projects, maybe, to figure out how to get that. But for all practical
purposes, most of biology is three or four significant figures. There are quantum limits to time and length, which
are so short that we don't need to concern ourselves. But the quantum unit for the mole is actually of great
importance to this course.

A mole is 6 times 10 to the 23rd entities. These entities can be photons or molecules, or we even have over 6
times 10 to the 23rd of the bacteria in an ocean. So what's important here is that the quantum of this is the
molecule, and many of the things we'll be dealing with are single molecules. And that'll be the last topic of
today's lecture, will be how one deals with single molecules as opposed to large buckets of molecules.



Now, we have all those great quantitative definitions for all the standard units used in physics and chemistry,
and even in biology, but what about the definition of biology itself? Most biology books start with this. There are
entire books dedicated to this question of what is life. I think that rather than, in this session, ask what is alive or
not-- rather than make it a dichotomy, I'd prefer to say how alive is something. What is the probability that a
given entity will replicate?

We have, here on slide 10, the probability of replication, and not just how likely is it for the whole thing to
replicate or some part of it to replicate, but is it doing so using simple parts, simple environmental components,
and creating great complexity from that. How faithful is the replication?

Now, this probability of replication from simplicity to complexity can be defined for a specific environment.
Sometimes, the environment required for replication is, of necessity, very specific. Certain organisms do not do
well except in their native environments. Zoos discover this, and we keep killing off species for a variety of
reasons, one of them being this specificity.

So when we talk about-- so another aspect of life-- which each of these, in principle, can be quantitated-- is how
robust is it. How many environments can it handle? Inevitably, there are environments that cannot be handled.
But the more robust and adaptable it is, in a certain sense, the more alive it is or the more alive it will be, its
descendants will be, millions of years from now, probably.

Now, some very challenging examples I list here. I'm not going to walk through all of them. But things that have
challenged people's definitions of life before are mules-- that is to say, sterile hybrids which will not leave behind
progeny but seem quite as alive as their parents were but will not replicate, generally.

So the probability of replication is low for the entire organism, but maybe for individual cells. Fires replicate quite
well, but most people would like to exclude them from this definition. Or perhaps if we're in the mode of not
excluding things from life, the probability of replication complexity versus simplicity might impinge upon fires.

Crystals-- if you nucleate a supersaturated solution with a crystal, it will make, in a certain sense, copies of itself.
How [? painful ?] is that? How simple is it? Flowers, viruses, predators-- these require very complex
environments. They require environments often more complex than themselves in order to replicate. Does that
make them less alive? I'll show an example of molecular ligation as the simplest case just to get us warmed up
for this introductory class.

Since we're in the topic here, briefly, of general biology, not just the historical terrestrial biology from which all of
us feel particular affinity-- if we had visitors from some other planet or if we started making our own self-
assembling machines-- and to some extent, we already are making self-assembling machines in factories. They
require a very complex environment which includes humans. But how do we define these things?

Now, in order to define-- to get at that complexity versus simplicity issue and faithfulness of replication, we need
to define both replication and complexity. Replication is not perfectly faithful in many of the things that you
would consider alive. So simple bacterium, even though it will make a copy that does many of the same things--
we know it when we see it-- it looks like it's the same thing. If you actually counted the molecules, no two
bacteria would be alike. No two humans, certainly, are alike. But even supposedly genetically identical bacteria
will have different numbers of proteins and small molecules.



Complexity has at least four definitions we will use in this course. There is computational complexity, which is of
practical significance in computational biology, as the computer scientists in the room will know, in that this tells
us the speed and memory tradeoffs we have in scaling up any problem. Does a problem scale up as a simple
linear function of the number of inputs that you give to the computer?

Does it scale up as a simple polynomial, or is it worse than that? Is it exponential in behavior? Is it something that
you can prove you got the right answer in polynomial time, and so on? We'll get to this later on, but I just want to
introduce it as something where the word "complexity" is used.

Number two sounds similar but is actually quite a bit different. It's algorithmic complexity or algorithmic
randomness. And this is basically any string-- not just a computer program, but a computer program can be
represented as a string-- can be reduced down where you get rid of obvious redundancy, and what's left is the
randomness. And the number of bits it takes to encode that algorithm is a reflection of the complexity. That
doesn't necessarily give you any predictions about how long it will run or how much memory it will require during
computation.

Entropy and information, number 3, is related to item number 2 in that the more complex the string-- a string is
just a series of symbols like this, and that was what we were talking about with the randomness-- the more
complex the string, or an image can be turned into a string-- these are three images here-- then the more bits
you need to encode it in order to, say, make a file. You might compress the data, but ultimately, after it's fully
compressed, that's the amount of information you need.

Entropy is a chemical term. This information definition was championed by Shannon-- we'll come back to it-- and
entropy by Boltzmann and others. And the fusion of these two into a unified theme is extremely important in
both chemistry and information theory.

Nevertheless, none of these above reflect our intuitive feeling for when we look at these three panels. We have a
highly ordered, which would be a very low entropy, array on the left-hand side. We have, on the far right-hand
side, something highly disordered, essentially random. This may have been generated by a coin toss where, as
you fill up the array, you just say black or white, toss a coin.

The one in the middle-- and so the low entropy on the left could be easily represented as 010101 in a simple
array-- very little information, very little entropy, algorithmically, not very random. At the other end, though, it
has high entropy, high information content. It takes a lot of bits to represent it even though you know you got it
just by a coin toss, and it has high algorithmic randomness.

But if you allow a coin toss to be part of your description of the physical complexity of this pattern on the far
right, say a gas or something like this generated by coin toss, then you can represent it as a particular kind of
random description, which this is almost as-- this is about as easy to describe as a highly ordered system. So
even though it's high entropy, it has low complexity. And complexity lies somewhere in between where you have
lots of different kinds of symmetries, lots of different scales of structures, and it's very hard to represent it either
as a random coin toss or as a highly ordered system.

How do we quantitate this? We're really trying to move from the vaguer definitions to something that really
encompasses what we intuitively feel about complexity. Here's an example I happen to like. I would say that this
is not something that's broadly adapted, but I want to expose you to it.



Here we have entropy or the randomness, the information-- Shannon information on the horizontal axis of slide
12 where the low entropy that's highly ordered is on the left-hand side. It's 0. And the highly disordered, random
high entropy of 1 on this type of scale is on the right-hand side.

And complexity, as we said, we expect does not correlate perfectly with information or entropy in that this highly
disordered structure on the right-hand side actually has very low complexity. And complexity is not even a single-
valued function of entropy or information because you can have multiple different structures that have the same
entropy but have different complexities. That's what we see here when you take a slice or a line up from the
horizontal axis up through the complexity. You can have multiple different values in here.

OK. That was an example of a model. Yeah.

AUDIENCE: [INAUDIBLE] despite how complexity is measured or [INAUDIBLE] definition--

GEORGE

CHURCH:

You'll really have to refer to this article. It's a fairly complicated one. But the idea here was you take a
complicated set of data generated by a logistic map that we'll come to in just a few slides, and you ask-- as you
increase the complexity of the map in a way that appeals to the intuitive definition of complexity you had in the
previous one, you calculate the number of symmetries, the physical symmetry that it would take to represent
this, allowing coin tosses as part of the algorithm for simplifying it.

It's just barred from all the previous definitions. Crutchfield and coworkers have championed this. And I would
say it's not widely accepted, but it's certainly not rejected either. And I find it appealing.

So why do we model? That was an example of modeling complexity. I pointed out earlier the models that we had
for a three-dimensional structure. This course is mainly about measurements. So why model? I would argue that
when we measure, we actually must model. And we need to do that not merely to understand the biological,
chemical data that we are collecting.

And if I understand, we can have various tests for our understanding. Tests might include, but not be limited to,
designing useful modifications of a system. The course is mainly about systems. And by using our models to
design a new variation on the system and then obtaining additional data and modeling that new data, we get a
better successful approximation to what the underlying data means. And we prove it, often with useful
modifications that can have impact on society or impact on other research agenda.

Another reason why we model is in order to share data. Typically, when you look in a database-- those of you who
have looked at biological or chemical databases, that is not data in the database, generally speaking. There are
models in there. And the things that you download are models.

So for example, the sequence that I showed at the beginning-- that's 76 nucleotides of A's, C's, G's and P's--
that's a model that represents our interpretation of some kind of fluorescent patterns that we see when we run
our instruments on amplified DNA taken from a variety of organisms. That's the model.

Similarly, the three-dimensional rotating transfer RNA that we saw was probably more obviously a model. There,
we integrate the chemistry of molecular mechanics and the physics of the diffraction data where the atoms-- the
electron density in a crystal lattice diffract and make a pattern. We integrate those models, and that's what
shared in databases.



Not only does it allow us to share data, but the way we share it is by searching. Those of you who have searched
either biological databases or the internet with Google or something like that know how powerful a search can
be. Typically, it is easier to search with a model and more powerful and more accurate to search with a model
than to search through raw data.

When we merge datasets, we will align them. We will find redundancies. We will integrate different concepts.
That requires modeling. And finally, checking data-- one of the themes of this course will be to embrace your
outliers. When you model your raw data and you find data that are very far away from expectation, this is a good
thing. It allows you to find errors in your model or errors in your data or discoveries. So checking is another.

Finally, integrating-- as I said, this course is about measures and models. And it's not just a survey of all the
things that you can do with computation in biology and computational biology, but most importantly, it's about
integration. We need more than one data type to make progress in biology and medicine, agriculture. And
integration is one of the biggest challenges that we have right now. It's relatively easy to collect a single
homogeneous dataset, but then to connect that to the rest of the world is the big challenge that all of you will
have.

A theme that will go throughout the course will be this business about errors, two types of errors, random and
systematic. And every time that somebody hands you some data or you collect your own data or you're dealing
with something from the literature, you should immediately assume there are both random and systematic
errors. You should know which is which and how much there is. You should not accept anything as being true
without qualification.

Random errors mean that if you repeat the experiment again and again, you will get slightly different variations
on the error types. And to a certain extent, they will average out over enough determination. Systematic errors,
on the other hand-- you have a high probability of getting almost exactly the same error again and again, or a
very small subset of a certain class of errors, which means that just doing it over and over will not improve your
statistics or improve your accuracy. You need to change paradigms altogether, collecting data by more than one
method.

So those are the types of reasons that we model. And now we should go through the kinds of models that we'll
do. This is a course that's basically on sequence, how sequence leads to three-dimensional or even four-
dimensional structures with time, how three-dimensional structures lead to function, how function is embedded in
complicated systems, so which models we will be searching, merging, and checking, as we said in the previous
slide.

Which models will we sequence? We will be making the assumption in dynamic programming, which is just a
fancy way of saying searching and aligning-- dynamic programming will make the assumption that sequences are
related to one another. They make the further assumption they are related by ancestry. That is to say, you
mutated them in the laboratory, or perhaps you were mutated before you came to the laboratory. That's dynamic
programming that can align sequences or three-dimensional structures which are quite different from one
another.



A few slides back when we talk about replication, if two things are replicated-- showing common ancestry, say--
the faithfulness of that replication is key to-- the dynamic programming is key to your accepting that something
is actually replicated. If it changes into something completely new in the process of replication, then it's unlikely
it will be able to maintain that.

Three-dimensional structure-- we will be talking about motifs, catalysis, complementary surfaces. I'll give you a
beautiful example of complimentary surface in a few slides. And all of this is dealing with the continuous
functions of energy and kinetics where different complementary surfaces will bind to one another with very
specific rate constants covering many orders of magnitude.

These energetic and kinetic phenomenon is what underlies the functional genomics. When we functional
genomic data, one of the ways we model it is we ask whether phenomena that we're studying inside our bodies
or inside of microorganisms, so forth-- the protein levels, the RNA levels, and so forth, where they go up and
down together means that they're a cluster. They have common properties. Does this common properties reflect
yet another aspect of them, like their common functions or their common mechanisms, for being coregulated?

In systems biology, we have these qualitative diagrams that tell us about the all or none, or Boolean, which
means logical 0's and 1's. Or we can treat them as continuous differential equations or stochastic where you
have some of the power of the differential equations, but you deal with individual molecules or individual
organisms and populations. Organisms can be stochastic. Molecules can be stochastic.

And another thing-- again, this theme of optimization-- we can ask whether a network or network component is
optimal. Is it optimal due to the past history of the organism, or is it something we can set a goal of a biotech
process to optimize it for a new function? Linear programming is the mathematical tool that one can use for
studying this. It's common in economic algorithms.

So we were talking about modeling in this whole realm, going from minimal life sequences through the catalysis
that involves interactions of three-dimensional structures, functional genomics, and the optimality that we get
that's required, as we will see momentarily, for getting single molecules to work.

What's our parts list? We're going to try to start simple, but put the simplicity in the context of the big picture.
The big picture for the atoms is the periodic table of the more than 100 elements. We have a very short list here-
- sodium, potassium, ion, chlorine, calcium, magnesium, molybdenum, manganese, sulfur, selenium, copper,
nickel, cobalt, and silicon, which are useful in many species.

If you have to pick something that's related to us as a minimal of biochemical system that shows some of the
replicative properties and evolutionary properties of life, you would say RNA-based life. One of the breakthroughs
in experimental science over the last couple of decades is recognizing that RNA, like proteins, has catalytic
capabilities. It has the potential to have been one of the early replicating units.

Just for the sake of describing a simple system, let's look at something made up of five elements. It's not
necessarily the simplest, but it's just something to think about. These five elements can be in the presence of an
environment which can be composed of the same five elements. The environment would be very simple, that
complexity versus simplicity.



It would be water, ammonium, positively charged ions, nucleotide triphosphate, negatively charged ions, which
are precursors to making polymers, and then possibly lipids, the fatty substances that bound membranes. An
example of catalyzed RNA polymerization is in this article, and then I'll deal with another one that, rather than
using nucleotide triphosphates, uses slightly larger RNA precursors.

Now let's start doing the toggling back and forth between living systems and computational systems so that,
whether you're from a computational background or biological or both, you'll see some interesting relationships.
Here we talked about a minimal biological system with five elements. Here we're going to talk about some
minimal problems with a very small number of elements. Basically, they're limited to a single line of code each.

And they do something which is related to the topic here. Replication is an exponential process, exponentially
growing. If something is autocatalytic is another way of describing it. So we've used that as the theme for our
minimal programs. What is this exponential function? We give it a very specific argument. The argument is 1. So
this is e to the 1 power, e being this number here that's represented the number of times, about 2.7.

The four languages that we're demonstrating here is Perl, Excel, Fortran 77, and Mathematica. In this course,
we'll mainly use Perl and Mathematica for reasons that will be evident in the next couple of slides. But I just want
to show you these different ones.

And in the theme of accuracy of replication, how faithfully is a particular string handled, either the string of
nucleotides in a simple life form or the string of digits in a number-- and you can see that the internal
representation of the math that goes on inside the computer has to be done digitally even though these are
transcendental numbers which have an arbitrary number of digits. And you can see that some programs are
typically limited.

And you can even guess the number of bits representing it internally. Here down at the bottom of slide 17, you
can see some of the nitty-gritty detail of how these things are represented as 0's and 1's representing the
[INAUDIBLE], the exponent, and so on. But you can see some of these programs, when they print, when they
actually print, the program is not aware of or the programmer was not aware of exactly what the internal
representation was. And so all these trailing 0's are incorrect.

The winner in this, of course, is Mathematica, here to ask for the e to the 1 power. You say, let's give it-- this n
bracket says let's start giving arbitrary precision where the numeric, the n numeric, is 100 digits. And this seems
like a stunt in this particular case. But actually, when you start doing a series of calculations where errors can
accumulate, the ability to go into arbitrary precision will allow you to prevent a catastrophic imprecision.

And what happens is, in a mathematical calculation, if it needs a little more precision than you initially
anticipated, it will go out and get it on its own, which is quite remarkable. Try to do that in any of these other
languages. They will typically give you what's called an underflow or an overflow error and either stop or just
make mistakes.

OK. That's my first advertisement for Mathematica. You can see all of these are very simple programs that belie
and hide underneath the very complicated electronics and algorithms that are built in to accomplish this. I'll give
you a feeling for what that is in just a couple of slides. So back to self-replication. We're toggling back and forth
between simple biological and computational systems.



We have-- here we've represented tri and hexanucleotides, three nucleotides and six. Again, remember, these
letters are crude-- or I should say simple representations of electron density involving dozens of atoms in the
shape of a cytosine, or a C, or guanine, or a G. It's important that you know that there are two strands in DNA,
typically, or even many RNAs-- in this particular example, whether this is RNA or DNA.

And in order to indicate the orientation of the strand, it has a directionality. We indicate 5-prime, which is the
name of an atom in the ribose, but the details are not important from a computational standpoint. It's just a way
of indicating this is one end of the RNA. And a CCG is not the same as a GCC. The 5-prime indicates the 5-prime
end of that.

We take two of these, which are basically identical, and they will ligate together spontaneously if you set up the
chemistry right to make these two trinucleotides into a hexanucleotide, CCG CCG. In the presence of a
complement here, which is CGG CGG, a different sequence-- I've tried to emphasize that by making it capital and
green-- that would bind to-- these two trinucleotides would bind to this, aligned by Watson-Crick base pairs.

The rules for Watson-Crick base pairs, many of you may know. A pairs with T, and C pairs with G. And that will
catalyze this process. It will speed up the kinetics in which these trinucleotides [? turn ?] [? into ?]
hexanucleotides. Now, here it gets interesting. This hexanucleotide now drops down here and speeds up the
process of this different trinucleotide [INAUDIBLE] and forming the original one that catalyzes the first reaction.

So this catalyzes, speeds up the first reaction, which produces a product that speeds up the second, which
produces the first catalyst, and so on. This is called a hypercycle, championed by Eigen and Schuster. And this is
probably one of the simplest examples of it. And I think it gives you a feeling for how a variety of interdependent
biochemical processes can result in autocatalysis where you get these exponential cycles which we recognize as
something very similar to replication.

This would have a very-- this could have a very high probability of replication. It could be very faithful, but its
complexity is low. The input complexity is low, and the output complexity is low. That's how we would qualify it.

Toggling back to computing and simple examples, I've given some simple examples already of Perl in
Mathematica. But in order to give a few more here on slide 19, why did we choose these two for this course? It's
been my experience, both in our laboratory and research environment, and also in this class, that these are two
of the easiest languages to learn.

That doesn't mean that they're absolutely easy, but the learning curve is very simple. It's very fast. And you can,
by example, change programs that are working into things that do what you want very quickly.

It's a high-level language in a sense-- the higher the level of the language, the closer you are to English
conversation. The lower the level of language you are, the closer you are to bits, 0's and 1's, or the actual
electronics inside of computers. So in the hierarchy, Perl and Mathematica are very high up there. Yeah.

AUDIENCE: Where do you get the password to download Mathematica?

GEORGE

CHURCH:

You will get that from your section teaching fellow. Yeah. So the question is where do you get the password for
Mathematica for this course, and the teaching fellows are responsible for that. And that's been tested. I think that
works.



So Perl is freely-- it's open source. It's interesting in that regard. I think many of you will find the concept of open
source where anyone can-- when software breaks or needs to be expanded, or it needs to be understood, it's
there for your inspection rather than hidden behind some corporate doors. Very interesting aspect of Perl.

Mathematica is not open source as far as I know. It has some interesting redeeming features, though. It's very
strong on math. No surprise given its name. In particular, it's both symbolic and numeric and in graphics. And
we'll have some examples of that in just a moment. It can do things that are hard to do in Perl and other
languages.

Perl is also very strong for web applications. Many of the most amazing things which are done on the web have
Perl behind the scenes. Now, when we-- a further comparison of-- this is the dark side of computation and
biology, showing another analogy, which is parasites. We have parasitic computer and viral-- biological viruses.

This one-- in past years, I had this little bit of a computer virus-- this is not the whole thing. This is just a little
piece of it. It's fairly short code. And this was a very nasty one at the time, quite a while ago. And I had it in the
PowerPoint presentation. When people would download it, they would then send me an email. I'm sorry to inform
you you have a virus in your PowerPoint.

And so this year, I've upgraded the PowerPoint. So this is actually an image rather than the actual text. And so
your viral detectors will not detect this unless they're a lot smarter than I think they are. This, on the other hand,
is the costs of these viruses. This is not a laughing matter.

This is 4 times the cost of the entire Human Genome Project per year. The Genome Project took us about 20
years to get going. Every year, we spend four times that amount on computer viruses, which are, as far as I can
tell, completely frivolous. Even more serious is this. Now, this is real text. This is not an image. It looked like an
image to you.

It's very serious. And I sincerely hope that some of the people in this class make a contribution to the intellectual
avenues which will ultimately lead to the defeat of the AIDS virus and various other viruses and bacteria like
them that cause so much suffering in the world. 20 million have died. This is worse than the Black Plague and the
1918 influenza epidemic.

And the analogy here between this part of the virus-- this is a little piece of the viral code in symbols of the 20
amino acids single-letter code. This is a little piece of the computer virus. And I've highlighted here the command
copy in the computer virus. This is just part of what it does to get this particular VBS script, the thing you're
seeing here, into some other part of your directory.

And this, essentially, is part of the copy command in the AIDS virus. This is the polymerase. The protein is
responsible for making copies of the code for the virus. And highlighted in red here are some of the mutations
that make this particular AIDS virus resistant to the drugs which have been instrumental, in some cases, in
taming AIDS temporarily, and at great cost. Clearly, vaccines, and hopefully other public health measures, will be
the answer.

Here are some other conceptual connections. These are not meant to be dogma or to limit you in any way but
hopefully to expand the way you think about these things. Obviously, as with other analogies, they will break
down. But let's just follow for a moment.



What we're calling the instruction set, the concept of an instruction set, in computers is a program, in organisms
is a genome. We've already said bits, so 0's and 1's, A, C, G and T. The stable memory, the thing that you can
depend on but is a little bit slow for access, are disks and tapes in computers, and they're DNA, or in some cases
RNA genomes.

That then-- you take it out of the slow memory, stable memory, and move it into something that's more active,
more volatile, which is random-access memory in computers and the RNA in organisms. The environment for
computers tends to be complex-- it's the internet sockets and people banging on the keyboard-- while organisms
can be very simple. I gave some examples earlier where it's complex, but it can be as simple as water and salts,
in which they can replicate very complicated structures.

The input and output can be-- the input can be analog and converted to digital in this process, digital analog for
output-- the analog, say, of your screens. And the input-output is governed by these proteins at the end of the
central dogma in organisms.

When we make these complicated systems from simple things, they go from so-called monomers, which really
combine into polymers, which need not be linear polymers, although they often are in biological systems--
basically, you go from minerals to chips in computers. These are replicated in factories. The factories or cells can
be as small as femtolitre.

Remember, this prefix, this femto, is 10 to the -15. That's about 1 cubic micron. Very small factories, very
amazing productivity and complexity. Again, input-output as above. And communication is extremely fast in
computers, slower but very rich in organisms.

After a very short break-- we can stretch-- we'll come back and talk in more detail about how computers actually
are made and how biological systems are made. Thank you.


