Harvard-MIT Division of Health Sciences and Technology HST.508: Quantitative Genomics, Fall 2005 Instructors: Leonid Mirny, Robert Berwick, Alvin Kho, Isaac Kohane

> HST.508/Biophysics 170: Quantitative genomics Module 1: Evolutionary and population genetics Lecture 4: natural selection – its modeling and detection

> > Professor Robert C. Berwick

Topics for this module

- 1. The basic forces of evolution; neutral evolution and drift
- 2. Computing 'gene geneaologies' forwards and backwards; the coalescent
- 3. Natural selection and its discontents
- 4. Detecting selection: Molecular evolution; from classical methods to modern statistical inference techniques

Agenda for today

1. Natural selection: from the basic dynamical system equation to the diffusion approximation: how can genes survive?

2. How can we detect selection in our data?

To think about from Nature

"Protein sequences evolve through random mutagenesis with selection for optimal fitness" – Russ, Lowery, Mishra, Yaffe, Ranganathan, sept. 2005, 437:22, p. 579. *Natural-like function in artificial WW domains*.

	The new realit 1 gene in 2	ty game sl different :	now - "Su forms (all	urvivor" eles)	
	genotype	AA	Aa	aa	
	frequency	p^2	2pq	q^2	•
	Viability	<i>w</i> ₁₁	<i>w</i> ₁₂	<i>w</i> ₂₂	
	after selection	$w_{11} p^2$	$\underset{w_{12}2pq}{\bigstar}$	w ₂₂ q	survivors
Intuitively, w is a	growth rate				I
Note that if N_t	= # before sel	ection, the	total # a	fter selection	on
is:	$egin{array}{ll} N_{t+1} = ar w N_t ext{ w} \ ar w = w_{11} p^2 + w \ ar w \ ar mean \ ar fit \end{array}$	$\psi_{12}^{\mathrm{there}} = t \mathrm{ness} = 1$	\bar{w}^{2q^2}		

Figure 5.7 Equilibrium distributions of allele frequencies under selection, drift, and migration. The curves in (A) are for different effective population sizes with s = 2m in each case. The curves in (B) correspond to different values of s for $N_e^v m = 5$. Note that increasing the effective population size makes the distribution more peaked, but has little effect on the position of the peak. Increasing the strength of selection relative to migration, though, shifts the peak to the right.

Allele	39	226	387	393	441	513	519	531	540	578	606	615	645	684
Reference	T	С	С	С	С	С	Т	С	С	Α	С	Т	Α	G
Wa-S		Т	Т		A	Α	С							
Fl-1S		Т	Т		Α	Α	С							
Af-S														Α
Fr-S														A
Fl-2S	G		10	1		1.1	1.1.97	253.4	12	1.70		12.		
Ja-S	G								Т		Т		С	A
Fl-F	G							G	Т	С	Т	С	С	
Fr-F	G							G	т	С	Т	С	С	
Wa-F	G	1.755		505.0		0.044	120	G	Т	С	Т	С	С	
Af-F	G	1.473		ber a				G	Т	С	Т	С	С	
Ja-F	G			A				G	Т	С	Т	С	С	
Table 1.1: 1nucleotide insequence whletters of theposition 192	The 1 in the lere the e all of the	1 AL refer the 1- ele na he pro	<i>DH</i> al ence 4 vari ame i otein;	leles. seque iant r dentif the l	A do ence. nucleo fy the F alle	ot is p The r otides e plac eles ha	laced numb are f e of c ave a	when ers re ound origin threo	n a nu efer to (see . The onine.	the Figure S a	ide is positi re 1.1 lleles	the ion in). The have	same the he fir a lys	as th codir st tw sine a

 $K_A = \#$ nonsynonymous substitutions/# nonsynonymous sites $K_S = \#$ synonymous substitutions/# synonymous sites

Test for selection by comparing d_N and d_S $K_A \ /K_S = 1$: Neutral evolution $K_A \ /K_S < 1$: Purifying selection

 $K_A / K_S > 1$: Positive selection

The K_A / K_S ratio (ω) measures the selective pressure

Kreitman's review - Ann. Rev. Genetics									
TABLE 1 St	Annu. Re tatistical tests of select	v. Genom. Human. Genet. 200 by Boston Univers ion ^a	0.1.539-539. Downloaded from argournals. ity on 09/27/05. For personal use only.	nnualreviews.org					
Test	Туре	Designed to detect	Best use	Caveats	Reference(
НКА	Within vs between spp. (two loci)	Differences in variation levels not accountable by constraints	Balancing selection; recent selective sweeps or other variation-reducing forces	High recombination rates may reduce effectiveness of test	49				
McDonald (run test)	Within- vs between-spp. (contiguous region)	Regions with non-neutral patterns of poly. and div.	Equilibrium balancing selection	Has some advantages over the HKA test	71,72				
McDonald Kreitman G	Within- vs between-spp. (syn. vs nonsynon.)	Adaptive evolution	Adaptive protein evolution; mutation/selection	Selection on codon usage can seriously jeopardize test	73				
Tajima's D	Within sp.	Skew in frequency spectrum	General purpose test of frequency spectrum skew	See reference 27 for situations in which the test performs poorly	96				
Fu & Li's D	Within sp.	Recent vs ancient mutations	General purpose test of frequency spectrum skew	Fu's more recent tests may be more powerful	29				
Fu W	Within sp.	Departures in frequency spectrum	Population subdivision	Hudson's Gst test is more powerful for detecting subdivision	27				
Fu Gŋ	Within sp.	Departures in frequency spectrum	Population subdivision, shrinkage, and overdominance selection	Little power against excess number of rare alleles 28	27				
Fu Gţ	Within sp.	Departures in frequency spectrum	Population subdivision, shrinkage, and overdominance selection	Little power against excess number of rare alleles	27				
Fu F ₃	Within sp.	Excess or rare alleles (one sided)	Population growth, genetic hitchhiking, and background selection	May be best overall test for detecting genetic hitchhiking and population growth	28				
Hudson	Within sp. and allele	Unexpectedly low variation within an allele class	Directional selection	A good test for young alleles driven to high frequency	45				
Wall B ans Q	Within sp.	Linkage disequil. between adjacent segregating sites	Population subdivision, balancing selection	Q is more powerful when there is substantial recombination	100				
Andolfatto's S_k	Within sp. (sliding window)	Non-neutral haplotype structure	Balancing and directional selection; pop. subdivision	Interpretation may be difficult	2				

