Harvard-MIT Division of Health Sciences and Technology HST.535: Principles and Practice of Tissue Engineering Instructors: Xiufang Zhang, Nanming Zhao, Yandao Gong

Physical and chemical modification and evaluation of chitosan nerve conduit material

Xiufang Zhang, Nanming Zhao, Yandao Gong

Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China

Background

- 1. In China, the number of patients with nerve trauma caused by various injuries or diseases is 1-3 million per year.
- 2. Without proper therapy in time, these patients will loss corresponding physiological functions permanently.
- 3. Few of the patients can be treated properly: difficulties in technology and economy

Different choices of nerve recovery

1) Surgical suture end-to-end Disadvantage: suitable only for small nerve gap

2) Graft as a guide for axon regeneration

Large gaps can be repaired with a graft inserted between the proximal and distal nerve stumps as a guide for the regenerating axon

•Autograft nerve removed from another part of the body, blood vessels or muscle fibres

Disadvantages:

*need for second surgical treatment;

*limited availability;

***denervation of the donor site**

•Allograft, nerve removed from other persons

Disadvantage: *immune rejection; *low success rate; *limited availability

•Heterograft

nerve from animals such as pig

Disadvantage: *immune rejection; *low success rate; *some other risk

Artificial nerve conduit

Nerve conduit is an artificial graft that bridges the gap between the nerve stumps and directs and supports regenerating axon.

* Hollow conduit;

* Conduit filled with growth factors, Schwann cells or fibres.

The function of nerve conduit

Nerve conduit bridges the gap between the nerve stumps and forms an environment suitable for nerve regeneration

Advantages

- Concentrating neurotrophic factors;
- Reducing cellular invasion and scarring of the nerve;
- Providing guidance to prevent neuroma formation and excessive branching.

Nerve conduit biomaterials

1) Nonresorbable materials such as silicone rubber

Disadvantage: need for second surgical treatment

2) Biodegradable or resorbable biomaterials

- Synthetic:
- *poly-lactic acid (PLA);
- *polyglycolic acid (PGA);
 - **Disadvantages:**
- *expensive;
- ***acidic degradation product**
- Natural:
- *chitosan;
- *collagen,

Chitosan, the fully or partially deacetylated form of chitin, is a positively charged polymeric saccharide with (1,4)-linked Dglucosamine repeat units

- **Advantages:**
- •biocompatible,
- •biodegradable,
- •plentiful in nature,
- cheap

Disadvantages

Low mechanical strength and toughness;
Low solubility;
Difficulty in manufacturing and shaping;

Work in our lab

Improvement of mechanical properties of chitosan;

- Improvement of chitosan biocompatibility;
- Control of chitosan biodegradability;
- •Conduit making chitosan shaping;
- •Preliminary functional evaluation.

Chitosan modification

- •Blending or chemical linking with gelatin, collagen and polylysine;
- •Surface coating with laminin, fibronectin, serum and polylysine;
- •γ-ray irradiation;
- Alkylation;
- Crosslinking with different reagent;
- Modulation of deacetylation degree.

Evaluation of chitosan-derived materials

- Biocompatibility evaluation
- Biodegradability evaluation
- Physical property evaluation
- Functional evaluation

Biocompatibility evaluation

- Contact angle
- Protein adsorption
- •Cell affinity:
- >Attachement of cultured cells;
- Proliferation: MTT measurement
- Differentiation: neurite length and other
- morphological features

- Water contact angle
- The hydrophilicity of a biomaterial is a determinant of the material's biocompatibility.
- Hydrophilicity of a biomaterial is dependent on its surface contact angle.

Protein adsorption

≻The adsorption of proteins, such as some ECM molecules, onto material surface, is an important determinant of biocompatibility of biomaterials

➤The laminin and fibronectin adsorption on film surface was investigated using ELISA and desorption method.

Biodegradability evaluation

 Evaluation of other physical property >Solubility Crystallinity >Mechanical properties

Chitosan modification (1)

- Blending or chemical linking with gelatin, collagen and polylysine;
- •Surface coating with laminin, fibronectin, serum and polylysine

Chi: chitosan;

GC: glutaraldehydecrosslinked chitosan;

CG: glutaraldehydecrosslinked chitosangelatin conjugate;

CAG: chitosan-gelatin mixture;

Gel: gelatin;

PL: polylysine;

CAP: chitosan coated with polylysine;

CPL: chitosanpolylysine mixture.

Water contact angle of 8 chitosan derived materials and tissue culture dish (TCD)

The contact angle value is the average of 6 measurements.

*: p<0.05 relative to Chitosan.

Water contact angle of five types of material measured at pH 7.4

* : Statistically significant lower contact angle (P < 0:05) compared to chitosan.

Adsorption of laminin in laminin solution on 8 chitosan derived materials

Chi: chitosan;

GC: glutaraldehydecrosslinked chitosan;

CG: glutaraldehydecrosslinked chitosangelatin conjugate;

CAG: chitosan-gelatin mixture;

Gel: gelatin;

PL: polylysine;

CAP: chitosan coated with polylysine;

CPL: chitosanpolylysine mixture.

The values are the average of 6 measurements. * : p<0.05 relative to Chi.

Adsorption of fibronectin in fibronectin solution on 8 chitosan derived materials

Chi: chitosan;

GC: glutaraldehydecrosslinked chitosan;

CG: glutaraldehydecrosslinked chitosangelatin conjugate;

CAG: chitosan-gelatin mixture;

Gel: gelatin;

PL: polylysine;

CAP: chitosan coated with polylysine;

CPL: chitosanpolylysine mixture.

The values are the average of 6 measurements. * : p<0.05 relative to Chi.

Adsorption of fibronectin in 5% serum on 8 chitosan derived materials

Chi: chitosan;

GC: glutaraldehydecrosslinked chitosan;

CG: glutaraldehydecrosslinked chitosangelatin conjugate;

CAG: chitosan-gelatin mixture;

Gel: gelatin;

PL: polylysine;

CAP: chitosan coated with polylysine;

CPL: chitosanpolylysine mixture.

The values are the average of 6 measurements. * : p<0.05 relative to Chi.

FMCC (fetal mouse cerebral cortex) cells cultured for 1 day

Gel

PL

CAP

CPL

Chi: chitosan, GC: glutaraldehyde-crosslinked chitosan, CG: glutaraldehydecrosslinked chitosan-gelatin conjugate, CAG: chitosan-gelatin mixture, Gel: gelatin, PL: polylysine; CAP: chitosan coated with polylysine, CPL: chitosan-polylysine mixture

FMCC (fetal mouse cerebral cortex) cells cultured for 6 day

Gel

PL

CAP

CPL

Chi: chitosan, GC: glutaraldehyde-crosslinked chitosan, CG: glutaraldehydecrosslinked chitosan-gelatin conjugate, CAG: chitosan-gelatin mixture, Gel: gelatin, PL: polylysine; CAP: chitosan coated with polylysine, CPL: chitosanpolylysine mixture

FMCC cell culture (1 day) on chitosan-derived materials precoated with proteins

chitosan film coated with **laminin**

chitosan film coated with **fibronectin**

chitosan film coated with **serum**

Growth of gliosarcoma (9L) cells on chitosan-derived materials

Chi: chitosan; GC: glutaraldehydecrosslinked chitosan; CG: glutaraldehydecrosslinked chitosangelatin conjugate; CAG: chitosangelatin mixture; Gel: gelatin

* : p<0.05 relative to chitosan

Growth of gliosarcoma (9L) cells on chitosan-derived materials

Chi: chitosan; GC: glutaraldehydecrosslinked chitosan; CG: glutaraldehydecrosslinked chitosangelatin conjugate; CAG: chitosangelatin mixture; Gel: gelatin

* : p<0.05 relative to chitosan

Attachment of PC12 cells to the five types of material

(a) Serum-free medium, (b) in medium containing 5% serum

CA: albumin-blended chitosan film;

- CC: collagen-blended chitosan film;
- CP: poly-L-lysine-blended chitosan film.

Initial seeding density was 1x10⁵ cells/cm²

* Statistically significant greater number of attached PC12 cells (P < 0:05) compared to chitosan.

CA: albumin-blended chitosan film;

CC: collagen-blended chitosan film;

CP: poly-L-lysine-blended chitosan film;

Differentiation level = (n/N)x100%

N: total cell number on the film; n: number of cells in which the neurite was longer than 10 mm.

Differentiation level of PC12 cells cultured on the five types of material

CA:

albumin-blended chitosan film;

CC:

collagen-blended chitosan film;

CP:

poly-L-lysine-blended chitosan film.

Average neurite length of PC12 cells cultured on the five types of material

chitosan

albumin-blended chitosan

collagen-blended chitosan

poly-L-lysine-blended chitosan

collagen

Fetal mouse cerebral cortex (FMCC) cells cultured (for 3 days) on five types of materials (Bar: 50 $\,\mu$ m)

Effect of gelatin content on the biological and physicochemical properties of chitosan-gelatin composite

X-ray diffraction patterns of chitosan-gelatin composite films with different gelatin content r.

The crystallinity of the composite film decreased with increasing gelatin content r

Crystallinity and rupture strain maximum of chitosan-gelatin composite films

gelatin content (r)	crystallinity (Xc, %)	rupture intensity (MPa)	
		dry	wet
0.0	19.8	68.6±2.8	5.50±0.67
0.2	14.4	68.2±3.9	4. 20±0. 48
0.4	6.5	62.4±3.4	2.80±0.42
0.6	4.2	51.6±2.2	2.30±0.28
0.8	0.0	43.3±2.5	1.40±0.18
1.0	0.0	36.7±1.3	0.0

Young's modulus E (a) and percentage of elongationat-break ϵ_B (b) of composite films in dry state as a function of gelatin content r

Both the Young's modules and percentage of elongationat-break of the composite films decreased with increasing gelatin content r

Young's modulus E (a) and percentage of elongation-atbreak ϵ_B (b) of composite films in wet state as a function of gelatin content r.

With increasing gelatin content r, the Young's modules of the composte films in wet state decreased and the percentage of elongation-at-break increased at first, then decreased when r > 0.6.

1-day cultured PC12 cells on different films. Bar=100 μ m.

Blending chitosan with gelatin improved the attachment and growth of the cells.

Histograms for neurite length of 6-day cultured PC12 cells on 4 kinds of materials. r : gelatin content

The median neurite length increased with increasing gelatin content r.

Conclusion

 Proper physical blending or chemical linking with gelatin, collagen and polylysine can improve the biocompatibility of chitosan and keep its physical properties reasonable. •Even a simple coating with laminin, fibronectin, serum and polylysine is also of help for chitosan biocompatibility.