HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Harvard-MIT Division of Health Sciences and Technology HST.582J: Biomedical Signal and Image Processing, Spring 2007 Course Director: Dr. Julie Greenberg

Medical Image Registration I HST 6.555

Lilla Zöllei and William Wells

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Applications

- multi-modality fusion (intra-subject)
- time-series processing
 - e.g.: *f*MRI experiments, cardiac ultrasound
- warping across patients (inter-subject, uni-modal)
- warping to / from atlas for anatomical labeling
- image-guided surgery:
 - modeling tissue deformation,
 - □ comparing pre- and intra-operative scans,...

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Roadmap

- Data representation
- Transformation types
- Objective functions
 - Feature/surface-based
 - Intensity-based
- Optimization methods
- Current research topics

Spring 2007

HST 6.555

Data Representation

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Cite as: Lilla Zöllei and William Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

10

Data Representation

Spring 2007

HST 6.555

Spring 2007

HST 6.555

12

Space of transformations

Data dimensions	Example
2D-2D	cardiac ultrasound,
	x-ray patient repositioning,
	histology – MRI, …
3D-3D	MR/MR, MR/CT, CT/CT, PET-MR, …
2D-3D	X-ray/CT, fluoroscopy-CT, surface model/video

Spring 2007

13

Class of transformations

- What motions or distortions are allowed to merge datasets?
 - Rigid Transformations:
 - displacement
 - rotation & displacement
 - Non-Rigid Transformations:
 - parametric
 - affine
 - □ piecewise-affine
 -
 - non-parametric

Spring 2007

Displacement only

 $T(x) \equiv x + D$

- 2D: 2 parameters
- 3D: 3 parameters
- For example:

Spring 2007

HST 6.555

Rigid Motion

$$T(x) \equiv R(x) + D$$

- both rotations and displacements are allowed
- length-preserving transformation
- order of transformations does matter!
- 2D: 3 parameters; 3D: 6 parameters
- for example: in 2D (non-linear in θ)

$$T(x) = Rx + D$$
$$R = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

R: valid rotation matrix

$$R^T R = 1$$
 and $|R| = +1$

Spring 2007

HST 6.555

• in 3D: rotate by heta about axis N

if q is a unit quaternion, such that

$$q = \left(\cos\frac{\theta}{2}; \hat{N}\sin\frac{\theta}{2}\right)$$

`

1

$$R = \begin{pmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(-q_0q_3 + q_1q_2) & 2(q_0q_2 + q_1q_3) \\ 2(q_0q_3 + q_2q_1) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(-q_0q_1 + q_2q_3) \\ 2(-q_0q_2 + q_3q_1) & 2(q_0q_1 + q_3q_2) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{pmatrix}$$

Horn, B.K.P., *Closed Form Solution of Absolute Orientation using Unit Quaternions*, Journal of the Optical Society A, Vol. 4, No. 4, pp. 629--642, April 1987.

1

Spring 2007

Cite as: Lilla Zöllei and William Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Non-rigid transformations

Parametric

- affine
- piecewise-affine
- others
- Non-parametric

Spring 2007

HST 6.555

Affine Transformation

 $T(x) \equiv M(x) + D$

- *M:* square matrix
 - beyond rigid motion, allows shears and scaling
 - preserves notion of parallel lines
- 2D: 6 parameters
- 3D: 12 parameters

HST 6.555

Spring 2007

HST 6.555

2D affine: determined by control points

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Piecewise affine

- 2D example:
 - \Box subdivide space of X into triangles
 - use different affine transformation for each triangle (determined by vertices...)

Spring 2007

HST 6.555

Other Parametric Transformations

- Finite element models
 - engineering methods to simulate mechanical / electrical systems (discretization of the space; integral problem formulation turned into system of linear equations)
- Spline models
 - Thin-plate splines, B-splines, Cubic splines

Fred Bookstein, Morphometric Tools for Landmark Data : Geometry and Biology http://www.iog.umich.edu/faculty/bookstein.htm

Spring 2007

HST 6.555

S. Timoner: Compact Representations for Fast Non-rigid Registration of Medical Images (MIT PhD`03)

Spring 2007

HST 6.555

S. Timoner: Compact Representations for Fast Non-rigid Registration of Medical Images (PhD`03)

HST 6.555

Spring 2007

Non-parametric models

Continuum mechanics

elastic solid models, fluid transport, …

G. E. Christensen* and H. J. Johnson: "Consistent Image Registration." *IEEE TMI*, VOL. 20, NO. 7, JULY 2001

© 2000 IEEE. Courtesy of IEEE. Used with permission.

Spring 2007

HST 6.555

© 2000 IEEE. Courtesy of IEEE. Used with permission.

Christensen, G. E., et al. "Large-Deformation Image Registration using Fluid Landmarks." *Image Analysis and Interpretation 2000, Proceedings of 4th IEEE Southwest Symposium*, pp. 269 -273

Spring 2007

HST 6.555

Spring 2007

HST 6.555

Objective functions

- measure how well things are lined up
- assumption: the input datasets (U,V) are related to each other by some transformation T
- define: energy function to be optimized

E = f(U(x), V(T(x)))

- 2 main styles:
 - > feature- or surface-based
 - intensity-based

Spring 2007

HST 6.555

Cite as: Lilla Zöllei and William Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Feature-based measures

compute alignment quality based upon the agreement of 2 sets of landmark features

assumption:

- Iandmarks visible in both images
- they can be reliably located and
- they can guide the alignment of the whole image

Spring 2007

HST 6.555

Surface-based measure

Spring 2007

Chamfer function

G. Borgefors. *Hierarchical chamfer matching: a parametric edge matching algorithm*. IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI- 10(6):849-865, November 1988

Spring 2007

 if structure is missing, <u>not</u> a robust measure of alignment; large penalties may swamp the measure

Spring 2007

HST 6.555

feature-based techniques used at the BWH:

- similar methods pioneered by
 - Charles Pelizzari (Dept Radiation Oncology, U. Chicago)
 - "Head in Hat" MR-SPECT/PET registration; extract surfaces of heads; register the surfaces

Spring 2007

HST 6.555

Cite as: Lilla Zöllei and William Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Intensity-based measures

- compute alignment quality based upon the intensity profiles of the input images
- no landmark or feature selection is necessary

Spring 2007

SSE and correlation (I)

SSE: sum of squared errors

$$E = \sum_{x_i} |U(x_i) - V(T(x_i))|^2$$

= $\sum_{x_i} \left[U^2(x_i) - 2U(x_i)V(T(x_i)) + V^2(T(x_i)) \right]$

Ist term: no dependency over T; 3rd term contributes a constant* ⇒ equivalent problem:

 $E' \equiv \sum_{x_i} U(x_i) V(T(x_i)) \implies \text{classical correlation}$

Spring 2007

HST 6.555

SSE and correlation (II)

For translation only: T(x) = X + D

$$E' = \sum_{x_i} U(x_i) V(x_i + D)$$

Convolution \Rightarrow can use Fourier methods...

Spring 2007

SSE and correlation (III)

CAVEAT:

problems can surface if some structure is missing or extra-large quadratic penalties can swamp the measure

$$E = \sum_{x_i} \left| U(x_i) - V(T(x_i)) \right|^2$$

Spring 2007

HST 6.555

More robust measures (I)

SAV: summed absolute value

$$E(x) = \sum_{x_i} \left| U(x_i) - V(T(x_i)) \right|$$

- Amy Gieffers, 6A HP Andover*: cardiac ultrasound registration
 - *later Agilent, later Phillips

Spring 2007

HST 6.555

More robust measures (II)

Saturated SSE

Spring 2007

HST 6.555

Multimodal inputs...

Spring 2007

HST 6.555

Multimodal Inputs

- correlation fails for multi-modal registration when intensities are different; e.g.: MR-CT
- one solution:
 - ⇒ apply a special intensity transform to the MRI to make it look more like CT; then compute the correlation measure
 - e.g.: Petra Van Den Elsen

Spring 2007

MR-CT situation

Spring 2007

HST 6.555

44

Histograms

Spring 2007

HST 6.555

Histogram Joint Intensity of Images

Images:

Joint intensities:

histogram

relative freq.

$\frac{2}{9}$	$\frac{1}{9}$
$\frac{4}{9}$	$\frac{2}{9}$

(1,2)(2,2)(1,2)(1,3)(2,3)(1,3)(1,2)(2,2)(1,2)

Spring 2007

HST 6.555

MRI & CT pairs

misaligned

slightly misaligned

aligned

Spring 2007

HST 6.555

47

Joint histogram: MRI & CT registered

Spring 2007

HST 6.555

Joint histogram: MRI & CT; slightly off

Spring 2007

HST 6.555

49

Joint histogram: MRI & CT; significantly off

Spring 2007

HST 6.555

entropy: $H(p(x)) \equiv -\sum_{x} p(x) \log_2(p(x))$

Spring 2007

HST 6.555

52

"Real" CT-MR registration: 3D starting position

Spring 2007

HST 6.555

CT-MR registration final result

Spring 2007

HST 6.555

CT-MR registration movie

From: Wells, W. M., et al. "Multi-modal Volume Registration by Maximization of Mutual Information." *Medical Image Analysis* 1, no. 1 (March 1996): 35-51. Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

Spring 2007

HST 6.555

Registration by minimization of joint entropy \cong

Alignment by maximization of mutual information

- Viola, PhD 1995
- Pluim, PhD 2001
- many more papers (2002: more than 100)
- West Fitzpatrick et al 1998 JCAT
 - …clear winner MR/CT…
 - □ …also good for MR/PET…

Spring 2007

HST 6.555

Chuck Meyer et al. (Radiology Dept, U Mich.)

- Non-rigid mutual information registration
- Thin-plate spline warp model
- Downhill simplex optimizer
 - rat brain auto-radiograph \leftrightarrow CT
 - breast MRI \leftrightarrow breast MRI

Spring 2007

HST 6.555

Spring 2007

HST 6.555

58