HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Harvard-MIT Division of Health Sciences and Technology HST.582J: Biomedical Signal and Image Processing, Spring 2007 Course Director: Dr. Julie Greenberg

HST 582 / 6.555

Image Processing II

2D and 3D Image Processing

- Useful linear signal processing for medical images
 - Interpolation
 - Down sampling
 - Hierarchical filtering
 - Computed Tomography (CT),
 - Projection Slice Theorem

2D and 3D Image Processing

- Useful non-linear processing techniques
 - Histogram equalization
 - Homomorphic filtering
 - Edge detection

Applications of Signal Processing in Medical Images

- Linear signal processing
 - Image reconstruction (tomography, MRI)
 - Image enhancement
 - Noise reduction
 - Artifact reduction
- Non-linear signal processing
 - Non-linear, adaptive filters
 - Tube enhancing filters
 - Segmentation and beyond

Interpolating Images

- Why
 - Prepare synthetic multichannel data
 - Prepare data sets for parallel trips down the same processing pipeline
 - Comparing images during Registration

Interpolation

- Optimal
 - Reconstruct the *bandlimited* original signal using sinc functions
 - Re-sample the reconstruction
- Nearest Neighbor
- Linear

Nearest Neighbor

- - To interpolate here, assign the intensity of the closest original pixel (in this case, I_{11})
 - leads to blocky results

Linear Interpolator (1D)

$$f(\Delta T) = f_1 + \Delta T (f_2 - f_1)$$

Bilinear Interpolator (2D)

use 1D linear interpolation for A and B, use 1D linear interpolation among A and B to get C

• Similar for 3D

Bilinear Interpolator...

$$f(\Delta T_{1}, \Delta T_{2}) = f_{11} + \Delta T_{1}(f_{21} - f_{11}) + \Delta T_{2}(f_{12} - f_{11}) + \Delta T_{1} \Delta T_{2}(f_{22} - f_{21} - f_{12} + f_{11})$$

Down Sampling

- Whenever a lowpass filter is applied, it may be possible to discard alternating pixels without much loss of information (downsampling, or decimation)
- If down-sampling is desired, it may be best to do some lowpass filter to avoid aliasing

- Reasonable LPF to use: $\frac{1}{16}$ [1,4,6,4,1]

Burt (Peter) Filter

Projection Slice Theorem and CT

Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Continuous Analog...

$$y = \log \frac{photons_at_sensor}{photons_at_source} = \int x(t)dt$$

x is a log-attenuation-density called: *Linear Attenuation Coefficient*

$$x_p(t_1) = \int x(t_1, t_2) dt_2$$

we can model x-ray imaging by line integrals...

Fourier Transform...

CT Reconstruction using FT Methods

- Rotate the x-ray apparatus to many angles
 - Take projections
- FT the projections
- Assemble the transformed projections in frequency space:
 - Get frequency data on these lines at the angles the projections were taken
- Interpolate the full frequency space
- Inverse FT to get back reconstruction

There is a related method: Filtered Back-projection which is usually used

Linear and Non-Linear Processing for Medical Images

Histogram Equalization

- A method for automatically setting intensity lookup table
- Apply a monotonic transformation to the data so that after the transformation, the result has a (nearly) uniform intensity histogram
- Tends to increase contrast in areas where the data is concentrated

Histogram the Image Intensities

Histogram: Examples

Figures removed due to copyright restrictions.

Image and its intensity histogram

Histogram equalization

Homomorphic Filtering

An automatic method for spatially varying contrast adjustment

Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Homomorphic Processing: Example

Image removed due to copyright restrictions.Figure 8.11 in: Lim, J. S. *Two-Dimensional Signal and Image Processing*.Upper Saddle River, NJ: Prentice Hall, 1989. ISBN: 9780139353222

Original image Image after homomorphic processing

related: unsharp masking

From Lim

Duality

- Focus on regions \rightarrow Segmentation
- Focus on boundaries \rightarrow Edges

• Sometimes best to do both.

Edge Detection

- From computer vision
 - Roberts 1965 Lincoln Lab
 - Horn 1972 MIT AI
 - Marr and Hildreth 1980 MIT AI
 - Canny 1983 MIT AI

Basic Idea: 1D Edge

• Motivation: ideal step edge + noise

Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Edges in 2D

Zero Crossing Style Edges: 1D

Noise

- Noise is an issue with derivative operators
 - How do we fight the noise
 - Assume white noise
 - Assume good stuff has important low frequency content
 - recall Wiener filtering...

Noise

- Noise is an issue with derivative operators
 - How do we fight the noise
 - Assume white noise
 - Assume good stuff has important low frequency content
 - USE LOWPASS FILTER (Gaussian ?)

Difference of Gaussians

Works in 2D, 3D, ...

- Gaussian separates
- There exists a rotationally-symmetric 2nd derivative operator:

Laplacian

Discrete analog:

similar for 3D

- -1 -1 -1
- -1 8 -1
 - -1 -1 -1

2D $\nabla^2 G$ Operator

• The zero crossing contours of the result of an operator like this form closed contours.

Seminal Edge References...

- "Theory of Edge Detection", David Marr, Ellen Hildreth, Proc. Royal Statistical Society of London, B, vol 207, pp 187 --217, 1980
 - good paper, often cited
- VISION, David Marr – good book!

• Excess zero crossings from noise, etc.

- Usual fix: threshold edges based on "strength."

• Threshold Bug...

Edge Detection

In 2D: threshold based on gradient strength

Ultimate Edge Operator: Canny

- For improved noise behavior go back to 1D directional derivatives
- For less fragmentation
 Use Hysteresis thresholding
- The problem:

In 1D Along 2D Contour

Schmidt Trigger uses Hysteresis

John Canny MIT MS Thesis

Edge Detection: Example

Source: Canny, J. F. "The complexity of robot motion planning." MIT Ph.D. thesis, 1987.

Edge Detection: Example

Detected edges

Source: Canny, J. F. "The complexity of robot motion planning." MIT Ph.D. thesis, 1987.

Edges in 3D are Surfaces

- Somewhat useful for finding organ boundaries.
 - Simple.
 - May leave the problem of figuring out which boundary is what.

3D Medical Edge Finding...

- Recursive Filtering and Edge Tracking: Two Primary Tools for 3D Edge Detection
 - Olivier Monga, Rachid Deriche, Gergoire Malandain, Jean Pierre Cocquerez
 - Image and Vision Computing Vol 9, Nr. 4, 1991

Figure 17. Original cross-section of NMR image corresponding to the diastolic cardiac phase

Figure 18. 3D edges after hysteresis thresholding, Deriche filter, $\alpha = 0.6$

Figure 19. 3D edges after hysteresis thresholding, Shen filter, $\alpha = 0.6$

Source: Monga, O., et al. "Recursive filtering and edge tracking: two primary tools for 3D edge detection." Image and Vision Computing 9 no. 4 (1991): 203-214. doi:10.1016/0262-8856(91)90025-K. Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

the end.