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Random Signals
(statistics and signal processing)

Primary Concepts for Random Processes

You should understand…

• Random processes as a straightforward extension of 
random variables.

• What is meant by a realization and an ensemble.
• The importance of stationarity and ergodicity

– Useful for estimating statistical properties of random 
processes.

• Some idea of how the autocorrelation/autocovariance
functions describe the statistical structure of a random 
signal.
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Random Processes

• A random process, X, is an infinite-dimensional random 
variable.

– If the size (dimension) is countably infinite then we have a 
discrete-time random process.

– If the size (dimension) is uncountably infinite then we have a 
continuous-time random process.

• As with any multi-dimensional random variable we can
– compute marginal and conditional statistics/densities over 

subsets of the dimensions.
• Random processes are interesting/tractable when there is 

some structure to the statistical relationships between 
various dimensions (i.e. the structure lends itself to analysis).

• We’ll focus primarily on second-order statistical properties. 
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Some Notation

• Let X denote a random process 
which can be thought of as the 
ensemble (or set) of all realizations

• A single realization (a sample from 
the ensemble) can be denoted by:

• - is a random variable, 
which represents the 45th sample 
over the ensemble 

• - is a two-
dimensional random variable, 
comprised of the 2nd and 11th

samples over the ensemble.
• When analyzing random processes, 

we are interested in the statistical 
properties of (potentially) all such 
combinations. 
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Realization vs. Ensemble

• Top plot: a single realization
drawn from the ensemble.

• Bottom plot: many 
realizations drawn from the 
ensemble.

• An ensemble is 
characterized by the set of 
all realizations.

• An important question:
When can one infer the 

statistical properties of the 
ensemble from the 
statistical properties of a 
single realization?

0 100 200 300 400 500 600 700 800 900 1000

-50

0

50

single realization

0 100 200 300 400 500 600 700 800 900 1000

-50

0

50

many realizations drawn from the ensemble

4/24/2007 HST 582   © John W. Fisher III, 2002-2007 6

Relationship to Earlier Material

What, if anything, can we say about y[n] when:
• H(f) is LTI/LSI
• x[n] is a random process

(Random Processes and Linear Systems)

( )H f [ ]y n[ ]x n

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY]. 



4/24/2007

John W. Fisher III 4

4/24/2007 HST 582   © John W. Fisher III, 2002-2007 7

Relationship to Earlier Material

What, if anything, can we say about y[n] when:
• H(f) is LTI/LSI
• w[n] is a random process
• s[n] is a deterministic signal or random process

(Wiener Filtering)

[ ]s n ( )H fΣ

[ ]w n

[ ]y n[ ]x n
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Noise reduction with Wiener Filtering 

•Left channel

•Right channel

•Wiener (left)

•Wiener (right)
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Important Concepts

Stationarity
Do the statistical properties of the random process vary or 

remain constant over time?
Ergodicity

Do time-averages over a single realization approach 
statistical expectations over the ensemble?

Autocorrelation Function
A function which describes the 2nd order statistical 

properties of a random process.
Crosscorrelation Function

A function which describes the 2nd order statistical 
relationships between two random processes.
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Three Example Random Processes

We’ll consider three random 
processes which illustrate 
concepts we are interested 
in.

Notation Reminder
• Samples are drawn from a PDF.

• Samples are drawn from a PDF with 
parameters, α.

• Samples are drawn from a Gaussian 
PDF with mean μ and variance σ2.

• I.I.D. Gaussian

• Gaussian Random Walk

• Smoothed Gaussian
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Some tools we’ll need…

• Law of Large Numbers
• Central Limit Theorem
• Chebyshev’s Inequality
• Addition of Independent Variables
• Convolution of Gaussians

– Used to derive properties of the Random Walk process and 
the smoothed Gaussian i.i.d. process

• Memoryless transformations of RVs
– Used to derive statistical properties of smoothed Gaussian 

i.i.d. process
• Multi-Dimensional Gaussian Random Variables
• Correlation and Correlation Coefficient

4/24/2007 HST 582   © John W. Fisher III, 2002-2007 12

Binomial Random Process

Consider the Bernoulli random 
process and it’s running sum:

We showed earlier that

• The binomial coefficient counts the 
number of ways we can observe k 
successes in N trials.

• The edge weights compute the 
probability of a given sequence with 
k successes in N trials.
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Binomial Random Process

Consider the Bernoulli random 
process and it’s running sum:

DeMoivre-Laplace Approximation

Q. So why does this approximation 
work?

A. DeMoivre-Laplace is an example of 
the Central Limit Theorem.
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Binomial Random Process

Pascal’s triangle
• A simple way to compute the binomial coefficient.
• Turn the graph on its side.

• So Pascal’s triangle is just doing the bookkeeping for us.
• It is also an example of something else: namely what 

happens when we add independent random variables.
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Sum of Two Independent Random Variables

• Suppose we generate a new 
random variable as the sum 
of two random variables

• Use CDF relationship to 
derive the PDF of the new 
variable

• The PDF resulting from the 
sum of two independent
variables is the convolution 
of the individual PDFs

Derivation
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Chebyshev’s Inequality

• A simple distribution free
bound which is a function of 
the variance of the random 
variable.

• It bounds the Probability 
that a random variable will 
deviate from it’s mean by 
more than some threshold t.

• Simple to prove and useful in 
proofs.

• It is a loose bound.

Derivation
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Chebyshev’s Inequality (Graphically)
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Chebyshev’s Inequality (Graphically)
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The Utility of 2nd Order Statistical Relationships
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2nd Order Statistical Relationships (Gaussian Case)

• Given x,y jointly Gaussian with the following mean and 
covariance

• For a general N-dimensional Gaussian random vector, x:
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2nd Order Statistical Relationships (Gaussian Case)

• Given x,y jointly Gaussian 
with the following mean and 
covariance

• Then p(y|x) is also Gaussian 
with the following 
conditional mean and 
variance

• Note that these are 
specified in terms of the 
second order relationships 
between x and y.
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2nd Order Statistical Relationships (Gaussian Case)

Depicted graphically
• μX and μY represent our prior 

expectation of the random 
variables

• Having observed a value of X 
our new expectation of Y is 
modified by

• Since 0<ρ2<= 1, our uncertainty 
is reduced.

• Note that all parameters are 1st

or 2nd order statistical 
properties.
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Linear Prediction (NonGaussian Case)

• Suppose x,y are not jointly 
Gaussian.

• We wish to find the “best”
linear predictor of y as a 
function of x

• Define “best” in terms of 
expected squared error:

• The (a,b) which minimize J are

Derivation
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Convolution of Gaussians*

• If x=y+z (y and z statistically independent) then px(x) is the 
convolution of pz(z) and py(y).

• A property of Gaussian functions is that when convolved with 
each other the result is another Gaussian:

• Related to the Central Limit Theorem: when we repeatedly 
sum many RVs with finite variance (not just Gaussians) the 
repeated convolution tends to a Gaussian (in distribution).

*while this is a useful property in general, we’ll use it to specifically to analyze the 
statistics of random walk.
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Memoryless Transformations of RVs

Linear Case

• Assuming a > 0 then

• For any a (not equal to zero) 
we get

Derivation 
• Define the event over Y in terms of 

an event over X

Random Signals Continued
(statistics and signal processing)
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Recap
at 6AM this figure seemed like a good idea, 9:30AM…not so much

adding i.i.d. 
random 

variables

Law of Large Numbers
(convergence to 

expectation)

Central Limit Theorem
(convergence to Gaussian 

in Distribution)

Convolving 
PDFs

Tchebyshev’s Inequality
(bounds deviation from μ

in terms of σ2)

Transformations 
of RVs 

Basic operations of 
filtering random 

processes with LSI 
systems

“Best” *Linear* 
predictors only 

needed 2nd order 
statistics
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Gaussian Random Walk

• The evolution equation for (Gaussian) random walk is 
specified in terms of a linear difference equation:

– Given the specification we can derive statistical properties 
of the random process y[n] in terms of the statistical 
properties of x[n]

– The tools for linear systems are sometimes useful for 
analyzing such equations (when?).

– We’ll get at a statistical description of y[n] in a somewhat 
cumbersome way as a means of motivating the concept of 
stationarity.
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Random Walk

• The top plot shows a single 
realization.

• The second plot shows many 
realizations.

• The bottom plot shows the 
mean +/- the variance as a 
function of time (index).

• The mean is constant (=y[0]) 
over all time, but the 
variance grows linearly with 
time.
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Gaussian Random Walk

Use the linear difference equation
to derive the process statistics in 
closed form:

• Given the following:

• Express y[1] in terms of x[1] given 
y[0]=0 to get the PDF of y[1] :

• Repeat for y[2], y[3], ... ,y[N] 
(use the convolution property of 
Gaussians)
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Gaussian Random Walk

• We can derive the joint PDF of 
{y[n],y[m]} using conditional probability:

• To get p(y[m]|y[n]) assume m > n and 
write y[m] in terms of y[n]

• When conditionend on y[n], randomness 
comes only from the second term, which 
is Gaussian, yielding:

Conditional Mean

Conditional Variance
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Gaussian Random Walk

• Alternatively, since variables are jointly Gaussian (which we 
would have to prove), we could compute the mean and 
covariance over the vector [y[n],y[m]]T

.

• This result easily extends to all combinations of elements of 
the random walk process (i.e. we can derive covariances for 
collections of time samples).
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Gaussian Random Walk

So what have we shown?
– Given a specification in terms of linear difference 

equations we can derive properties of a random process in 
closed form.

– However, the derivation for this very simple case was 
nontrivial.

– We will look for simpler ways of describing random 
processes.

Specific to random walk we see that the marginal and 
joint densities change over time.

– This is an example of a nonstationary random process.
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Random Walk (scatter plots)
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Stationary Processes

Stationarity (or lack thereof) is an important statistical 
property of a random process.

• There are two types of stationarity we are interested 
in:

– Strict Sense Stationarity (SSS)
• A very restrictive class of random processes

– Wide Sense Stationarity (WSS)
• A much broader class of random processes

• SSS implies WSS, but the converse is not true.
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Strict Sense Stationary
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Strict Sense Stationarity (SSS)

• A random process, x[n], is strict sense stationary if the 
following property holds:

for all i, j, N, and {x0,…,xN-1}.
• This is basically saying that the signal statistics don’t inform 

us about index or time.
• The Gaussian Random Walk process is an example of a non-
Stationary process (e.g. variance changes over time)

• The Gaussian I.I.D. process is perhaps the simplest example 
of a Stationary process (the statistics don’t change)
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Gaussian I.I.D. Process

This is a simple example of a 
stationary process:

• y[n] are sampled Independently
and Identically from the same 
marginal density

• All joint densities can be 
expressed as products:

• The distribution is independent
of i and the form is identical
for all N.

• The statement of SSS holds 
trivially:

• All i.i.d. (Independent and 
Identically Distributed) 
processes are SSS.
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Smoothed Gaussian I.I.D. Process

• The smoothed i.i.d. random 
process (which is SSS) is also 
defined in terms of a linear 
difference equation:

• Use convolution property and 
transformation property to 
derive pY(y[n]):

• Write y[n] and y[n+M] in terms of x[n] to 
see that they are independent of each 
other (i.e. there no terms in y[n] that 
have any statistical dependence on any 
terms in y[n+m])

• Consequently, in order to show SSS we 
are only left to show that

• Is independent of n.
• This would be done in the same way that 

we derived joint statistics for random 
walk
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Smoothed Gaussian I.I.D. Process
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Relaxing Strict Sense Stationarity -> WSS

• Strict Sense Stationarity is a somewhat restricted 
class of random processes.

• This motivates us to look at milder statement of 
stationarity, specifically Wide Sense Stationarity.

• Wide Sense Stationarity only considers up to 2nd order 
statistics of a random process.

• Relating the 2nd order statistical properties of output of 
a linear system when the input is a WSS random process 
is much easier than in the SSS case.
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Wide Sense Stationary
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Wide Sense Stationarity (WSS)

• A random process x[n] is wide sense stationary if the 
following properties hold:

• Rx[m] is the auto-correlation function (discussed later).
• Straightforward to show that SSS implies WSS.
• WSS implies SSS only when all of the joint densities of 

the random process are Gaussian.
• WSS implies constant 2nd order statistics.
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Uniform I.I.D. (smoothing revisited)

• Suppose we replace the 
Gaussian i.i.d. random 
process in our smoothing 
example with an i.i.d. 
sequence of Uniform random 
variables with the same 
variance.

• The result is a random 
process whose 2nd order 
statistical properties are 
the same as the Gaussian 
case.

• Why? 

Cite as: John Fisher. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image
Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY]. 



4/24/2007

John W. Fisher III 23

4/24/2007 HST 582   © John W. Fisher III, 2002-2007 45

Autocorrelation Functions (example)
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Time-Averages of Random Signals

• The time-average or mean of a random signal is defined 
as:

when the limits exist.
• You should be able to show that the time-average 

operator is linear
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Signal Statistics using Time-Averages

• The mean (average) of a 
signal is denoted:

• The mean power of a signal 
is defined in terms of it’s 
time-average:

• The AC power refers to the 
power in the variational 
signal component:

• Fairly straightforward to 
show that
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Time-Averages of Random Signals (Examples)
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Ergodicity

• Random processes which are ergodic have the property 
that there time averages approximate their statistical 
averages. That is,

for all p (actually for all functions of x[n] or x(t)).
• The left hand side is an average over all indices (or 

time) for a specific realization.
• The right hand side is an expectation over all 

realizations at a specific index (or time).
• Generally, SSS implies Ergodicity (there are special 

cases for which this is not true)
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Mean and Covariance Ergodicity

• Mean ergodicity is a milder form of ergodicity stating 
simply that the statistical average equals the time 
average:

• Covariance ergodicity states that the variance over time 
is equal to the variance over realizations:

• Covariance-ergodicity implies mean-ergodicity, but not 
the reverse.
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• Autocorrelation Functions, Crosscorretion Functions
– Properties
(these were presented on the board)
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Autocorrelation and Autocovariance

It turns out that we could have made a choice in our 
definition of the auto-correlation function.

Q: So why choose one over the other?
A1: By choosing the definition with x[n+m], many of the 

spectral properties used later will work out in way that 
is consistent with processing of deterministic signals

A2: I like Gubner’s book on probability and random 
processes
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Stationarity

• Wide Sense Stationarity
states that statistics up to 
second-order are constant 
over time. 

• Strict Sense Stationarity
states that all of the 
process statistics are 
constant over time.

• SSS implies WSS, but not 
vice versa (except for a few 
special cases)

– e.g. unbounded variance

Random
Processes

Wide-Sense
Stationary

Strict Sense
Stationary
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Ergodicity

• Strictly Sense Stationarity
(almost always) implies 
Ergodicity.

• Wide Sense Stationarity
(almost always) implies Mean 
and Covariance Ergodicity

• We care about Ergodicity
because it means time-averages 
converge to statistical 
averages.

• Consequently, for Stationary-
Ergodic processes we can 
estimate statistical properties 
from the time-average of a 
single realization.

• We can come up with 
uninteresting examples of SSS 
processes which are not Ergodic

Random
Processes

Mean-Ergodic,
Covariance-Ergodic

Ergodic
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Linear Systems and Random Processes

• It turns out that characterizing the 2nd order 
statistical properties of a random process which is input 
to a linear time/shift invariant system allows us to easily 
characterize the 2nd order statistical properties of the 
resulting output.

• Most (all?) of the properties we’ll be
discussing are geared towards
understanding the nature of this
relationship.
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Linear Systems and Random Processes

• It turns out that characterizing the 2nd order 
statistical properties of a random process which is input 
to a linear time/shift invariant system allows us to easily 
characterize the 2nd order statistical properties of the 
resulting output.
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Response of a Linear System

• Given a WSS (or SSS) random process, x[n], and LSI 
system with impulse response h[n] we can compute the 
time-average of the output y[n].
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• Cross-correlation of input and output
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White Noise Sequences/Estimating System Response

• White noise sequences are 
WSS processes whose 
autocorrelation function is equal 
to:

where

• The process is uncorrelated 
from sample-to-sample.

• All i.i.d. sequences satisfy this 
constraint.

• However, we only require the 
samples to be uncorrelated, but 
not independent.

• So, if the input to our system is 
a white-noise sequence:

then the 2nd order statistics of 
the output process can be used 
to estimate the system 
response function.

• Why is this called “white”
noise? 

– related to Power Spectrum.
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Power Spectral Density

• Note that in the 
previous result we 
stated:

so, the autocorrelation 
of the system response 
function is  computed as 
the convolution of the 
h[m] with a time-
reversed version 
h[-m].

• This convolution could 
be computed in the 
Fourier domain:
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Power Spectrum (con’t)

• Motivated by the previous 
convolution, we shall define 
the power spectrum of a 
random process to be the 
Fourier transform pair of 
the autocorrelation function:

• Consequently, we can 
express the output power 
spectrum as a function of 
the system response in the 
frequency domain and the 
input power spectrum:
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Power Spectrum Estimation (nonparametric)

• The Periodogram estimate 
of the Power Spectrum is 
defined as

Where the estimate is being 
computed from the first N 
observations of a realization, 
x[n].

• While this seems like a 
logical estimate of Sx(f), it 
turns out that it does not 
converge to Sx(f) as N grows 
large.

• Why? Because as N grows 
large the number of degrees 
of freedom in our estimator 
grows as well.

• The consequence is that the 
variance of the estimate is 
of the same order as the 
value of Sx(f) at every f.
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Power Spectrum Estimation (nonparametric)

• However, all is not lost. If we apply the estimator below 
to multiple sections of  N observations of the  
realization, x[n].

where XN,M(f) is the periodogram of the Mth section, 
then the estimate converges to the true Power 
Spectrum as M and N grow large.
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Power Spectrum Estimation (parametric)

• Based on previous results, 
suppose we model an 
observed realization, y[n], as 
the output of a filter, h[n], 
whose input was a white-
noise sequence.

• Can you think of a convenient 
way to estimate the power 
spectrum?

• How does it differ from the 
periodogram approach?

• The estimate would simply 
be:

• Why?
• The essential difference 

(and potential win) comes 
from how you specify h[n].

• If you leave the number of 
free parameters low AND
your model (the function of 
the parameters) is 
reasonably close, the 
estimate can be quite good.
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Wiener Filtering
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Primary Concepts for the Wiener Filter

• The problem that a Wiener filter solves
• Applications of Wiener filters
• Wiener filtering implementation details

Courtesy of RLE at MIT.  Source: Wikipedia.
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The Problem

• Suppose we have two random processes whose joint 
second-order statistics are known, and we want to 
estimate one from an observation of the other.

– Disclaimer: We’ll only deal with jointly WSS processes.

x[n] y[n]

?x[n] y[n]?
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Wiener Filter (one case)

• Suppose we have 2 realizations of random processes, 
y[n] and x[n] and we wish to construct a filter which 
predicts y[n] from observations of x[n].

• One criteria for choosing such a filter might be to 
minimize the mean square error (MMSE) between y[n] 
and your prediction.
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Wiener-Hopf Equations

• We wish to determine the 
h[k] which minimize the 
criterion.

• Taking a gradient with 
respect to the coefficients 
yields the following system 
of linear equations

• These equations are known 
as the Wiener-Hopf or Yule-
Walker equations.

• They are easily solved 
provided there is enough 
data given the size of the 
filter.

Nth-order FIR filters
• If we restrict ourselves to 

Nth order FIR filters, the 
Wiener-Hopf equations 
become:

• This is a system of linear 
equations which can be 
solved if N is not too large.
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Orthogonality Principle

• The error is uncorrelated with the estimate.

Editorial Comments of Kevin Wilson (former 6.555 TA)
• This is big with the 6.432 crowd.
• It can be useful to check this when you’re debugging Wiener filter 

code.
• Why is this “the right thing”?
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Non-causal Wiener Filter

• The Wiener-Hopf equations are just a convolution in this case.
• Time-domain convolutions are usually easier to manipulate in the 

frequency domain.  
yet another editorial comment from K. Wilson
• Let’s go there together.
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Welcome to the frequency domain

• Power spectrum reminders:
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Non-causal Wiener filtering in the frequency domain

• So Wiener-Hopf is:

• Each frequency is independent of all other frequencies.
• Now we’ll look at some special cases and examples.

( ) ( ) ( )

( )
( )

( )

xy x

xy

x

S f S f H f

S f
H f

S f

=

=

4/24/2007 HST 582   © John W. Fisher III, 2002-2007 74

Uncorrelated noise case

• Uncorrelated noise:      Ryd[n] = 0         Syd(f) = 0

+y[n]

d[n]

x[n]
“signal”

“noise”
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Signal-to-noise ratio interpretation
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SNR(f) >> 1 :   H(f)≈1
SNR(f) << 1 :   H(f)≈0

4/24/2007 HST 582   © John W. Fisher III, 2002-2007 76

ECG example

• What you did in lab (band-
pass filter):

• Wiener filtered result:
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(Synthetic) Audio Example

• S(f):
• Y(f):
• Ŝ(f):

S(f) Y(f)G(f) +

D(f)

Pressure 
waveform 
at Alan’s 
mouth

Room
acoustics

Noise

Pressure 
waveform at 
listener’s ear 

Wiener
Filter Ŝ(f)
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Wiener filter abuse, Part 1

• What if we use the filter derived from Alan’s speech on 
Bob’s speech?

• Bob’s noisy speech:
• Bob’s Wiener-filtered speech:
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Wiener filter abuse, Part 2

• What if we use the filter derived from Alan’s speech on 
Caroline’s speech?

• Caroline’s noisy speech:
• Caroline’s Wiener-filtered speech:
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Wiener Filters are not the magic solution to all of your 
problems.

• Additive noise

• Frequency nulls

Wiener filtered Clean
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System Identification – Problem Definition

• Estimate a model of an unknown system based on 
observations of inputs and outputs.

x[n] y[n]?

ŷ[n]Model
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Wiener Filters for System ID

• Let’s restrict our model to be an LTI system.

• Now the goal is to find the LTI system that best predicts the 
output from the input.  This is the Wiener filter (except that 
we now estimate output from input instead of input from 
output).

– The result is the same, but we shift focus from ŷ[n] to H(f).

x[n] y[n]?

ŷ[n]h[n]
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Example – LTI System

• If the unknown system really is LTI, we hope that Wiener 
filtering recovers that LTI system exactly.

X(f) Y(f)G(f)

Ŷ(f)Model
H(f)
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Example – LTI system plus noise

X(f) Y(f)G(f)

Ŷ(f)Model
H(f)

+

D(f)
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Example – LTI system plus noise

X(f) Y(f)G(f)

Ŷ(f)H(f)

+

D(f)
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We can still recover the 

LTI system exactly!
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Causal Wiener Filters

• The Wiener-Hopf equations had a simple form in the non-causal 
case.  Is there an equally simple form for the causal Wiener 
filter?

• Short answer – not really, but we’ll do our best.

• Let N -> ∞. How do we solve this equation?

[0][0] [1] [ 1] [0]
[1] [0] [ 2]

[ 1][ 1][ 1] [ 2] [0]

xyx x x
x x x

xyx x x

RR R R N h
R R R N

R Nh NR N R N R
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Causal Wiener Filters

• The non-causal Wiener filter had a simple frequency-domain 
interpretation.  Can we do something similar for the causal 
(IIR) Weiner filter?

• Short answer – sort of.

• Let N -> ∞. How do we solve this equation?
– Answer: I have no idea for the general case; let’s try a special case.
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Causal Wiener Filter w/ white noise observations

• If Rx[n] = δ[n], then the 
system simplifies to:

• I can solve that!

[0][0]1 0 0
0 1 0

0 0 1 [ 1][ 1]
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Causal Wiener filter with whitening filter

• If we can find a causal whitening filter W(f) for the 
observation, we may be able to reduce the problem to 
the form on the previous slide.

• Hand-waving time… You’ll also need the joint statistics 
between your whitened observation and the process 
that you’re estimating.  To get these joint statistics, 
W(f) must have a causal inverse.

• It’s not always possible to find W(f) such that both 
W(f) and W-1(f) are causal.
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Implementation details

• Filter form restrictions:
– FIR: solve linear system
– Causal: whiten observation
– Noncausal: nice frequency-domain expression

• Acquiring the statistics
– Where do we get Rx and Rxy?

• Sample statistics for auto- and cross-correlations
• Periodogram estimates of power spectral densities
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Summary

• A Wiener filter finds the MMSE estimate of one 
random process as a linear function of another random 
process.

• Applications includes noise removal and system 
identification.
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