Harvard-MIT Division of Health Sciences and Technology HST.584J: Magnetic Resonance Analytic, Biochemical, and Imaging Techniques, Spring 2006 Course Directors: Dr. Bruce Rosen and Dr. Lawrence Wald

HST.584 / 22.561 – Problem Set 2 Due: Mar. 1 / 2006 in class

1) Perform the following experiment: A 90° pulse with B_1 along the x' axis rotates **M** to the y' axis (rotating frame here!). As soon as the pulse is completed, change the *phase* of the RF by 90° so that B_1 now lies along the y' axis also. Since B_1 and **M** are collinear, no torque is exerted on **M**, and it remains along the y' axis. In the absence of B_1 we know that M would decay due to both T_2 and inhomogeneities in B_0 (ΔB_0). If we set B_1 >> ΔB_0 , the effective field $B_{eff} \cong B_1$, and the effects of inhomogeneities are eliminated.

This experiment (called "spin locking") does not eliminate decay of \mathbf{M} entirely. Because in the rotating frame, B_1 plays the role of the fixed field, relaxation of \mathbf{M} in the direction of B_1 (along y') is analogous in some ways to spin-lattice (T₁) relaxation. For this reason the kind of relaxation is called T_{1r}.

- (a) Design a **simple** experiment to measure T_{1r} .
- (b) In the limit of small B_1 , what would T_{1r} approach? (In fact, the spin locking experiment is a good way of measuring this quantity in some circumstances).

2) In class we plotted T_1 versus correlation time τ_C . Given that T_2 relaxation depends on molecular motions at near zero spectral frequency, as well as motions at the resonance frequency, and given that the area of the spectral density curves is a constant, sketch a plot of T_2 versus correlation time τ_C .

What does this look like for $T_c \omega \ll 1$? For $T_c \omega \gg 1$?

What does this imply about the T_1 and T_2

3) Several different pulse sequences have been proposed to measure T_2 relaxation times, each with certain advantages and disadvantages. Two such sequences are as follows:

CP $90_x - t - 180_y - 2t - 180_y - 2t...$ (aka Carr-Purcell) CPMG $90_x - t - 180_y - 2t - 180_y - 2t...$ (aka Carr-Purcell-Meiboom-Gill)

Note that n spin echos occur at regular intervals separated in time by 2t.

- (a) If the radio frequency pulses are perfect, will there be any differences in the echo signal as a function of time between these two pulse sequences?
- (b) Assume that the RF pulses are imperfectly "tuned", such that the 180° pulses applied above are in fact actually only 170° B₁ pulses. For the CP pulse sequence, how will errors in the RF pulse angle propagate into a determination of T₂ (i.e. will the measured T₂ decay be higher or lower than the 'true' T₂)?
- (c) How will the CPMG pulse sequence differ from the CP pulse sequence in its sensitivity to pulse angle errors such as discussed above (watch the B₁ phase in the rotating frame!)? Will even numbered echoes (2nd, 4th, etc) behave the same as odd echoes? Will errors be additive from one echo to the next? Why?
- (d) How should one properly use CPMG data to calculate T₂ from spin echo amplitudes?