
HST.584 / 22.561 Exam Solutions 

Marking Scheme: a, b, c, d, e, f, h, i, j, k, l, m – 5 marks; g – 20 marks; Total = 70 marks 
as students could omit 2 questions. 

 
a) As stated, we assume all magnetization is completely relaxed (i.e. along the z-

axis) at the start of the pulse sequence.  Following a right-handed rotation of 45° 

about the –y axis, we have )1,0,1(
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b) Given the constraints, after 99 ms any transverse components will have 
experienced T2

* dephasing of the form 
*
2Tte− .  Therefore, 
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c) We desire the same signal amplitude after our second pulse as we had after our 
first pulse.  This means we require the same transverse component (transverse 
component determines signal amplitude) i.e. Mx(97ms) = Mx(2ms).  If T1 >> 101 
ms (i.e. no longitudinal relaxation has occurred), just prior to the second pulse we 
will assume that all existing transverse magnetization has been dephased (T2

* 
decay) and our longitudinal component is the same as after our initial pulse.  
Therefore, to generate the same Mx component following our second pulse, we 
need a 90° pulse.  In other words: 
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 following 90° pulse about –y axis 

d) If we account for T1 recovery of the longitudinal magnetization, Mz(99ms) will 
be larger than Mz(2ms) and thus we will require a smaller flip angle than in the 
previous question. 
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 We require Mx(101ms) = Mz(99ms)sinθ2 = 0.889M0 sinθ2 = Mx(2ms) = 
2

0M− . 

 Therefore, θ2 = 52.3° about the –y axis. 
 
e) Our bandwidth determines the slice thickness; our frequency offset from the 

Larmor frequency determines the slice position along the z-axis. 
i. Bandwidth:  HzGcmsGcmGz Z 400)1)(4000(1.0 111 ==∆ −−−γ

ii. Offset:  HzGcmsGcmGz Zoff 4000)1)(4000(1 111 == −−−γ
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f) This is simply a Fourier relationship.  Sinc RF pulses produce rectangular 
excitation profiles.  Gaussian  RF pulses produce Gaussian excitation profiles, 
with an inverse relationship (i.e. A wide Gaussian in time will excite a narrow 
Gaussian slice, a narrow Gaussian in time will produce a wide Gaussian slice).  I 
am not going to attempt to draw Gaussians in Word – see me if you’d like an 
example. 

g) The basic formula for determining k-space position is .  Our unit 

of δk corresponds to .  To 
determine our trajectory, we simply integrate our gradient waveforms. 
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Fig. 1 – k-space trajectory for the gradient waveforms between t = 0 ms and t = 100 

ms.  The numbers on the actual trajectory corresponds to times in ms. 
 
h) If we read off the trajectory we traced out in the previous question, we produce 

the following ordered pairs (in units of δk): 
Time (ms) (kx, ky) (Units of δk) 

0 (0, 0) 
11 (-5, 15) 
14 (-5, 15) 
16 (-5, 31) 
99 (-5, 31) 
110 (15, -5) 



 
i) This large Gy pulse is a spoiler or crusher gradient meant to dephase the residual 

transverse magnetization. 
j) No, we did not use a rectilinear approach to cover k-space (constant spacing along 

k-space lines  think EPI or 2D-FT imaging approach). 
k) After the second series of gradient manipulations, we have traced out two zig-zag 

patterns about the +ky axis and +kx axis.  While we can use Fourier symmetry 
relations to reduce the k-space coverage for a real object (and most objects are 
real), we have not covered enough of k-space yet to employ one of the relations.  
At minimum, we need to cover ½ of k-space to reconstruct a real object (and in 
practice slightly more, such as 9/16 or 5/8, in order to make appropriate phase 
corrections – for more detail on this take HST.587 with Dr. Elfar Adelsteinsson) 

l) Resolution = 1 / kmax in both dimensions. 
Taking kxmax = 15 δk = 30 cm-1.  Therefore, resx =  1/30 cm 
Taking kymax = 15 δk = 30 cm-1.  Therefore, resy =  1/30 cm 

m) kx is sampled most densely near the origin (between 3 & 4 ms) & least densely on 
the final leg of the trajectory (between 10 & 11 ms).   

FOVx = 1 / ∆kx, FOVy = 1 / ∆ky

If our FOV is based on the least densely sampled region, we cover 9 δk in 16 
samples.  Therefore, ∆kx = 9 (2 cm-1) / 16 = 9/8 cm-1.  Thus FOVx = 8/9 cm.  
Similarly, ∆ky = 9 (2 cm-1) / 16 = 9/8 cm-1.  Thus FOVy = 8/9 cm. 


