Harvard-MIT Division of Health Sciences and Technology HST.584J: Magnetic Resonance Analytic, Biochemical, and Imaging Techniques, Spring 2006 Course Directors: Dr. Bruce Rosen and Dr. Lawrence Wald

22.561 Final Project

¹⁹F Magnetic resonance imaging of perfluorooctanoic acid encapsulated in liposome for biodistribution measurement

Magnetic Resonance Imaging

Motivation and Challenges

Visualization of the tissue distribution of perfluorooctanoic acid (PFOA, C₇F₁₅COOH) by ¹⁹F-MRI for pharmacological studies of similar compounds (many applications; toxicity)

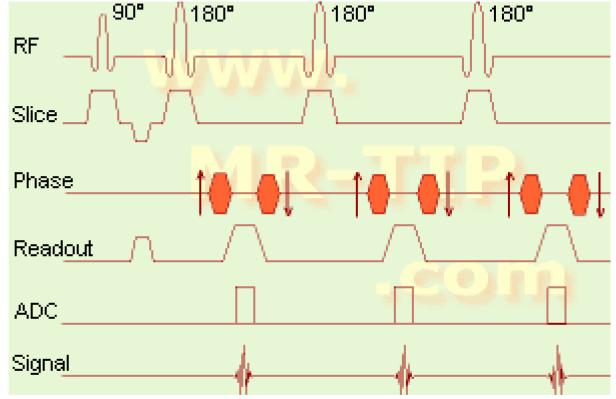
Wide-range distribution of chemical shifts of ¹⁹F-containing metabolites \rightarrow molecular imaging and tissue function evaluations

¹⁹F-MRI for image contrast enhancement

- No background \rightarrow ¹⁹F signal is the contrast for ¹H-MR image (anatomy)
- ¹⁹F has the next highest MR sensitivity (83% of ¹H)

Challenges intrinsic to ¹⁹F-MRI

- ¹⁹F has Long T1 \rightarrow long acquisition time; Short T2 \rightarrow signal attenuation
- Chemical shifts of ¹⁹F NMR → chemical shift image artifacts (although preferred to trace the metabolism)
- Signal can only be obtained from the agents retained in tissue → SNR is the major concern for ¹⁹F-MRI


Solution – Chemical Shift Selected Fast Spin-Echo

Chemical shift artifacts

→ chemical shift selected RF pulse

Short T2

→ Spin Echo (SE) to preserve the signal

Courtesy of www.MR-TIP.com. Used with permission

Long T1 \rightarrow Fast Spin Echo (FSE) to shorten acquisition time

Multiple phase-encoding steps with a single excitation (90° RF) and multiple echoes (180° RF), # of echoes per TR = echo train length (ETL) Acquisition time reduced proportional to ETL

Effective echo time (TE) = maximum TE / ETL

Chemical Shift Selection

Figure removed for copyright reasons.

See Kimura, A., M. Narazaki, Y. Kanazawa, and H. Fujiwara. "19F Magnetic resonance imaging of perfluorooctanoic acid encapsulated in liposome for biodistribution measurement." *Magnetic Resonance Imaging* 22 (2004): 855-860. 9.4T (376.2 MHz)

TR = 0.2 s, 128 scans

The ¹⁹F NMR spectra in the female mouse stomach and liver were measured 0.4 and 2.7 h after the administration of the PFOA-liposome solution, respectively.

- Chemical shift between -CF₃ group and other -CF₂ groups > 35 ppm (10 times that of fat and water ¹H) → frequency difference ~14 kHz
- Chemical shift selection was able to eliminate chemical shift artifacts.
- Only -CF₃ signal was excited → no the signal intensity modulation by J-coupling caused by adjacent ¹⁹F atoms

¹⁹F Relaxation Times

In vivo and in vitro relaxation times of the CF₃ signal of PFOA

Standard deviations in parentheses	PFOA		
	T ₁ (ms)	T_2 (ms)	
In vivo	140 (20)	6.3 (2.2)	
In excised liver	300 (30)	15.7 (1.5)	
In PFOA-liposome	400 (40)	2.3 (1.4)	
In ethanol	1900 (100)	1300 (80)	

- T1 by Inversion Recovery → double dynamic range
- T2 by Carr-Purcell-Meiboom-Gill (CPMG) → refocusing pulse error corrected at even echoes
- T2 of water ¹H ~ several tens to hundreds of ms; T2 of -CF₃ group of PFOA < 10 ms *in vivo* Short T2 in liposome probably due to high solution viscosity
- Both T1 and T2 of -CF₃ of PFOA were shortened *in vivo* Molecular motion of PFOA restricted, especially the -CF₃ group

*In Vitro*¹⁹F-MRI of PFOA-Liposome Solution – Parameter Optimization for *In Vivo*¹⁹F-MRI

ETL = 2 in (b) more effective than ETL = 4 in (c)

- [PFOA] = 5.4 mM; Effective TE = 1 ms
- For ETL = 4, last two echoes at 3, 4 ms
- T2 of -CF₃ of PFOA in solution = 2.3 ms

Maximum TE value constrained by T2, increase ETL to reduce effective TE

- More 180° RF pulses per TR
- Requires strong and rapidly switching gradients
- Under instrumental constraints, ETL = 2 was used as the optimal value for *in vivo* ¹⁹F-MRI.

Images removed for copyright reasons.

See Kimura, A., M. Narazaki, Y. Kanazawa, and H. Fujiwara. "19F Magnetic resonance imaging of perfluorooctanoic acid encapsulated in liposome for biodistribution measurement." *Magnetic Resonance Imaging* 22 (2004): 855-860.

In Vivo ¹⁹F-MRI

Images removed for copyright reasons.

See Kimura, A., M. Narazaki, Y. Kanazawa, and H. Fujiwara. "19F Magnetic resonance imaging of perfluorooctanoic acid encapsulated in liposome for biodistribution measurement." *Magnetic Resonance Imaging* 22 (2004): 855-860.

1 mL PFOA-liposome solution <u>orally</u> administered to mice with fasting for 4 hr

9.4T (376.2 MHz); Chemical shift selection: Gaussian pulse, 9kHz band width; TR = 0.15 s; Effective TE = 1 ms; ETL = 2; 64 x 16 data points; FOV = 8cm x 4cm; No slice selection; Acquisition time = 12min

PFOA initially in the mouse stomach \rightarrow at 1 hr, began to distribute into the liver \rightarrow at 2.7 hr, PFOA mostly transferred to the liver

PFOA Tissue Distribution Quantification by ¹⁹F-NMR

Tissue	Concentration (µmol/g tissue)	Percent dose (%/g tissue)	 Mice were sacrificed after ¹⁹F-MRI and the organs were excised and cut into pieces for ¹⁹F-NMR.
Liver	1.74 (± 0.41)	32.0 (± 8.6)	-
Plasma	0.74 (± 0.01)	13.6 (± 0.2)	¹⁹ F-NMR signal intensity of -CF ₃ of
Stomach	0.30 (± 0.05)	5.5 (± 0.9)	PFOA from different organs was
Lung	0.27 (± 0.02)	5.0 (± 0.4)	measured and calibrated by signal
Intestine	0.25 (± 0.08)	4.6 (± 1.5)	from benzene solution of
Kidney	0.15 (± 0.03)	2.8 (± 0.6)	trifluoroactamide (CF ₃ CONH ₂) for
Spleen	0.14 (± 0.01)	2.5 (± 0.2)	_ quantification.

The lowest concentration of PFOA that ¹⁹F-MRI was able to visualize was estimated from the images $\rightarrow \sim 1 \ \mu mol PFOA / g$ tissue

Assume tissue density = 1g/mL \rightarrow ~1 mM of PFOA << ~100M of water ¹H

Conclusions

- Tissue distribution of PFOA was successfully traced by ¹H and ¹⁹F -MRI, the latter of which used chemical shift selected fast spin-echo method.
- It was necessary to administer PFOA at high concentration of 100 mg (0.19 mmol)/kg body weight, corresponding to 20 times the dose using radiolabel method. → major challenge for ¹⁹F-MRI is SNR
- Contrast agents that elongate T2 and shorten T1 are desirable.

Questions?

- Would you use ETL = 3 or 4 for *in vivo* ¹⁹F-MRI since T2 = 6.3ms instead of 2.3ms?
- If the acquisition time is 12 min (0.2 hr) and PFOA is moving, what actual states do the images at 0.4, 0.6, 1.0 hr ... represent?
- Is FSE is the optimal sequence for ¹⁹F-MRI?
- How to make use of all the ¹⁹F nuclei in PFOA instead of -CF₃ only since the concentration of PFOA is the limiting factor?