Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

Motivation

From Propositions To Fuzzy Logic and Rules

Staal A. Vinterbo

Harvard-MIT Division of Health Science and Technology

Decision Systems Group, BWH

Harvard Medical School

Nov 9 2005: HST 951/MIT 6.873 Class

Present a formal foundation for

- propositional rules
- fuzzy sets
- fuzzy rules

in order to enable understanding and implementation of a fuzzy propositional rules classifier.

Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	1 / 56	Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	2 / 56		
Outline				Propositional Logic What is a proposition anyway?					
 Propositions Propositions over sets Fuzzy Sets 				A proposition is a statement that an interesting statement was m a long time ago: <i>This statement is false.</i>					
 Propsitions over Fuzzy Set 	ts			Before we can start saying anything about the above or other statements, we need to establish a language, the <i>propositional language</i> or <i>PL</i> .					

An *expression* in *PL* is any string consisting of elements from the sets

• an infinite set of variables $V = \{a, b, \ldots\}$, and

V and S, i.e., any string of variables and symbols.

Propositional Logic Syntax Components

• a set of symbols $S = \{\sim, \lor, (,)\}$.

The PL language consists of

Definition

Formation Rules

An expression is either a *well formed formula* (wff) or it is not. The following wff fomation rules allow us to define wff:

Definition

- A variable alone is a wff
- If α is a wff, so is $\sim \alpha$, and
- If α and β are wff, so is $(\alpha \lor \beta)$

Example

for variables *a* and *b* the expression $(a \lor \sim \sim \sim b)$ is a wff, while the expression $a \sim \lor b$ is not.

Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	5 / 56	Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	6 / 56	
F	Propositional Logic Syntax		Propositional Logic Semantics					
Leaving out outer parentheses				Propositional Logic Semantics Semantics = Meaning				

We sometimes leave out the outermost parentheses of expressions: $(\alpha \lor \beta)$ becomes $\alpha \lor \beta$ even though this is, strictly speaking, not a well formed formula according to the rules above.

Given a wff we would like to determine whether this expression is true or false. In order to do this we need to define the *semantics* or meaning of our language.

Propositional Logic Semantics

Setting: variable value assigments

Propositional Logic Semantics Interpretation: Truth Value of Expressions

Definition

We define a *setting s* as a function $s : V \rightarrow \{0, 1\}$ assigning to each variable either the value 0 or the value 1, denoting true or false respectively.

Definition

An *interpretation* is a function that takes as input a wff and returns 0 or 1 depending on the setting used.

- Formally if we let WFF denote the (infinite) set of wff of PL we define the interpretation I_s as I_s : WFF → {0,1}.
- If the setting s is given by the context or is irrelevant, we drop the subscript and just write I.

$\sim: \ \{0,1\} \to \{0,1\}$ $\lor: \ \{0,1\} \times \{0,1\} \to \{0,1\}$

\sim (0)	=	1
\sim (1)	=	0

\vee	0	1
0	0	1
1	1	1

Table: Truth table for disjunction \lor

 \sim and \lor are propositional operators and are called negation and disjunction, respectively.

The expression $\alpha \lor \beta$ is called the "disjunction of α and β ", while $\sim \alpha$ is called the "negation of α ".

In everyday language negation is often pronounced "not", while disjunction is pronounced "or".

Propositional Logic Semantics

Semantics of Operators: Infix notation

Propositional Logic Semantics Computing the Interpretation /

Usually the propositional operators taking two arguments (binary operators) are written in what is called infix notation, i.e., instead of $\lor(0,1)$ we write $0\lor1$. We also usually remove the parentheses from $\sim(0)$ and write ~0 .

Example

 $\vee(0,1) = 0 \vee 1 = 1.$

The computation of *I* applied to a wff is made according to these rules:

- For a variable a, I(a) = s(a),
- $I(\sim \alpha) = \sim I(\alpha)$, and
- $\blacktriangleright I(\alpha \lor \beta) = I(\alpha) \lor I(\beta)$

for wff α and β .

Example: Computing the Interpretation *I*

Propositional Logic Semantics

Example

If we let s(a) = 1 and s(b) = 0, then

Propositional Logic

Syntactic "Sugar"

► ∧ is called *conjunction* ("and")

$$(a \wedge b) \stackrel{\mathrm{def}}{=} \sim (\sim a \lor \sim b)$$

- $(a \land b)$ is often called the "conjunction of *a* and *b*".
- \blacktriangleright \rightarrow is called *implication* ("implies")

$$(a \rightarrow b) \stackrel{\mathrm{def}}{=} (\sim a \lor b)$$

Left side is the *antecedent*, right side is the *consequent*. We also let $(b \leftarrow a) \stackrel{\text{def}}{=} (a \rightarrow b)$.

 \blacktriangleright \leftrightarrow is called *equivalence* ("equivalence")

$$(a \leftrightarrow b) \stackrel{\mathrm{def}}{=} (a \rightarrow b) \land (b \rightarrow a)$$

HST 951/MIT 6.873

14/56

Validity and Satisfiability: Defined

Propositional Logic

Testing for validity: Truth Table Method

The truth table for $(a \rightarrow b)$ is given here:

а	b	$(a \rightarrow b)$
0 0	0	1
0	1	1
1	0	0
1	1	1

- Table rows represent settings of variables a and b and the resulting value for $(a \rightarrow b)$.
- ▶ Is $(a \rightarrow b)$ valid? Satisfiable? Valid: No. Satisfiable: Yes.

Note: Tables can become Large.

```
Staal A. Vinterbo (HST/DSG/HMS)
```

```
Fuzzy Stuff
```

HST 951/MIT 6.873 18/56

Validity and Satisfiability Propositional Logic

Propositional Logic

Example: Testing for validity using Falsifying Setting Method

Based on the observation that:	Is $((p \land (p \leftrightarrow (q \land r))) \rightarrow q)$ valid?	
$\blacktriangleright \sim \alpha$ is satisifiable $\Rightarrow \alpha$ is not valid, or		
$\blacktriangleright \sim \alpha$ is unsatisifiable $\Rightarrow \alpha$ is valid.	$((P \land (P \leftrightarrow (q \land r)))$)))
Strategy: find consistent satisfying setting <i>s</i> for $\sim \alpha$ or show that there	1 1 1 1 1 1 1	

HST 951/MIT 6.873

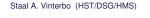
17/56

4 2 6 5 8 79 3 1

A wff α is *valid* if and only if $I_s(\alpha) = 1$ for every setting s. A wff α is *satisifiable* if there exists a setting *s* such that $I_s(\alpha) = 1$, and unsatisfiable if no such setting s exists.

Example

```
The wff (\alpha \lor \sim \alpha) is valid, while (\alpha \land \sim \alpha) is unsatisifiable.
```



Fuzzy Stuff

Propositional Logic Validity and Satisfiability

Testing for validity: Falsifying Setting Method

is none.

q)

0 0

Example: Testing for validity using Falsifying Setting Method

Is $((p \land (p \leftrightarrow (q \land r))) \rightarrow q)$ valid?

((р	\wedge	(р	\leftrightarrow	(q	\wedge	r))) \rightarrow	q)
	1	1		1	1		<u>1</u>	1	1	0	<u>0</u>	
	4	2		6	5		8	7	9	1	3	

Answer: Yes. The settings underlined pose a contradiction.

Note:

If we during the process shown are allowed alternatives, we need to show a contradiction in *all* the possible alternative settings in order to declare our expression valid.

Propositional Logic The *PL* Logic System: Components

The logic system of *PL* consists of three things:

- ▶ The specification of the language *PL*, as given above,
- the set of valid wff of PL, known as axioms, and
- the two transformation rules Uniform Substitution (US) and Modus Ponens (MP).

The axioms and wff obtained from the axioms by application of the transformation rules are called *theorems* of *PL*. We denote that α is a theorem by writing $\vdash \alpha$.

- The result of uniformly replacing any variable a₁, a₂,..., a_n in a theorem α with any wff β₁, β₂,..., β_n respectively is itself a theorem.
- ▶ Uniform means here that any occurrence of a_i in α is substituted with the same wff β_i . We write this as $\alpha[\beta_1/a_1, \beta_2/a_2, ..., \beta_n/a_n]$.

Example

The result of $(a \rightarrow (a \lor b))[(c \land d)/a, c/b]$ is $((c \land d) \rightarrow ((c \land d) \lor c))$.

Modus Ponens (also called the rule of detachment) is sometimes written as α

$$\frac{\alpha}{\beta} \rightarrow \beta$$

If α and $\alpha \rightarrow \beta$ are theorems, then by MP so is β . This simply reflects the truth-functional meaning of \rightarrow .

The PL Logic System: Derivability

Propositional Logic Propositional Consequence: Definition

We express the derivability of a wff by one or more wff by ' \Rightarrow '. As in:

US:	$\vdash \alpha \Rightarrow \vdash \alpha[\beta_1/a_1, \beta_2/a_2, \dots, \beta_n/a_n]$
MP:	$\vdash \alpha, (\alpha \to \beta) \Rightarrow \vdash \beta$

Clear:

we can manipulate wff by using the rules defining operators and semantics.

Definition

The wff β is a *propositional consequence* of wff α if and only if $\alpha \leftrightarrow \beta \wedge \gamma$ for some wff γ .

We formulate this as a derived transformation rule:

$$\mathsf{PC:} \vdash \alpha, \vdash (\alpha \leftrightarrow (\beta \land \gamma)) \Rightarrow \vdash \beta$$

By showing how we would do without the rule:

- (1) α^{given}
- (2) $(\alpha \leftrightarrow (\beta \wedge \gamma))^{given}$
- (3) $((\alpha \to (\beta \land \gamma)) \land ((\beta \land \gamma) \to \alpha))^{\text{US}(a \to b) \land (b \to a)}$
- $(4) \qquad ((((\alpha \to (\beta \land \gamma)) \land ((\beta \land \gamma) \to \alpha))) \to ((\alpha \to (\beta \land \gamma)))^{US ((a \land b) \to a)}$
- (5) $(\alpha \rightarrow (\beta \land \gamma))^{MP(3)+(4)}$
- (6) $(\beta \wedge \gamma)^{MP (1)+(5)}$

β

- (7) $((\beta \land \gamma) \rightarrow \beta)^{\text{US }((a \land b) \rightarrow a)}$
- (8)

If Alf studies, Alf gets good grades. If Alf does not study, Alf has a good time. If Alf does not get good grades, Alf does not have a good time.

What can we say about Alf?

s = "Alf studies"

Propositional Consequence: Example Formals

Propositions over Sets Characteristic Function: Defined

- g = "Alf gets good grades"
- t = "Alf has a good time"

 $(oldsymbol{s}
ightarrow oldsymbol{g}) \wedge (\sim oldsymbol{s}
ightarrow oldsymbol{t}) \wedge (\sim oldsymbol{g}
ightarrow oldsymbol{c}) \leftrightarrow oldsymbol{g} \wedge (oldsymbol{s} ee t)$

Using PC, we can conclude that Alf gets good grades.

Definition

A *characteristic function* is a function that has as co-domain the set $\{0, 1\}$, i.e., $f : U \rightarrow \{0, 1\}$ is a characteristic function.

- Furthermore, f is the characteristic function of the subset S of U such that S consists exactly of the elements x in U such that f(x) = 1.
- ► Formally, $S = f^{-1}(1) = \{x \in U | f(x) = 1\}$. We will denote the characteristic function for the set $S \subseteq U$ as χ_S .

Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	29 / 56	Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	30 / 56
Derecei				Deve of	0ts		
Propositions over Sets				Propositi	ons over Sets		
Propositions over Se	ts			Propositions over Se	ts		
Propositions: Defined			Syntax				

Now, a proposition over a set is a proposition that describes a property of the elements of that set. Such propositions are modeled by characteristic functions.

Example

Let \mathbb{N} be the set of natural numbers, and let *p* be the proposition "x is an even number". We model *p* by the characteristic function *even* : $\mathbb{N} \to \{0, 1\}$ defined as

 $even(x) = (x + 1) \mod 2$

We have that even(2) = 1, and even(3) = 0, and so forth...

As before we have to define the language PL(U) of propositions over the set *U*. Syntactically, this language is identical to the language *PL*, except that the set *V* is the set *F* consisting of (the names of) characteristic functions on the set *U*.

Propositions over Sets Semantics: Truth Sets

Propositions over Sets Semantics: Truth Sets for "Syntactic Sugar"

The semantics of *p* over *U* is based on truth sets. We define truth sets of wff of PL(U) according to the following rules: For $p \in F$, and wff α and β

- ► $T(p) = \{x \in U | p(x) = 1\},\$
- $T(\sim \alpha) = U T(\alpha)$, and
- $T(\alpha \lor \beta) = T(\alpha) \cup T(\beta).$

Analogous to the *PL* case:

- $T(\alpha \wedge \beta) = T(\alpha) \cap T(\beta),$
- $T(\alpha \rightarrow \beta) = (U T(\alpha)) \cup T(\beta)$, and
- ► $T(\alpha \leftrightarrow \beta) = ((U T(\alpha)) \cup T(\beta)) \cap ((U T(\beta)) \cup T(\alpha)).$

Example

For the natural numbers and the proposition *even* the truth set is $T(even) = \{2, 4, 6, ...\}.$

- If we let WFF(U) be the set of wff of PL(U) we define the interpretation $I(\alpha, x)$ of a wff α with respect to an element x in U to be
 - $I(\alpha, x) = 1$ if and only if $x \in T(\alpha)$.

Alternatively, we can formulate the above as

$$I(\alpha, \mathbf{x}) = \chi_{T(\alpha)}(\mathbf{x}).$$

Consider the propositions "x is a prime number" and "x is an even number" over the natural numbers modeled by the characteristic functions *even* and *prime* with the usual definitions. Let $\alpha = even \land prime$. Then we have that

$$T(\alpha) = T(even) \cap T(prime) = \{2\},\$$

and $I(\alpha, x) = 1$ if and only if x = 2.

Propositions over Sets $PL(U) \supseteq PL$

We state that *PL* is "contained in" *PL*(*U*). Indeed, *PL* is contained in *PL*({0,1}) as we can let $a \in V$ become $a \in F$ given by $T(a) = \{s(a)\}$. Then $I_s(\alpha) = I(\alpha, 1)$.

Propositional Rules

The implication view

if-then form

if height = tall and hair = dark then look=handsome

- "height = tall and hair = dark" is the antecedent or "if-part",
- "look=handsome" is consequent, or "then-part".

Application

- ► fact: height = tall and hair = dark
- rule: if height = tall and hair = dark then look=handsome
- ► inference: look=handsome

In effect we are using Modus ponens

A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	37 / 56	Staal A. Vinterbo (HST/DSG/HMS)	Fuzzy Stuff	HST 951/MIT 6.873	38 / 56

Propositional Rules

Propositional Rules

The implication view: formals

The *descriptor* "height = tall" is a proposition HeightTall over the set of all people. We now formulate the if-then rule as propositions over sets:

 $(\text{HeightTall} \land \text{HairDark}) \rightarrow \text{LookHandsome}$

The application becomes:

 $\begin{array}{l} (\mathsf{HeightTall} \land \mathsf{HairDark}) \\ (\mathsf{HeightTall} \land \mathsf{HairDark}) \rightarrow \mathsf{LookHandsome} \\ (\mathsf{LookHandsome}) \end{array}$

Effect:

Staal

We infer the unknown proposition LookHandsome.

Propositional Rules

Propositional Rules

Computation: Computing the Interpretation

Definition

Given a rule $(\alpha \rightarrow \beta)$. The application of this rule to a data point *x* is the computation of $I(\beta, x)$ as $I(\alpha, x)$.

In other words we set
$$I(\beta, x) = \begin{cases} 1 & I(\alpha, x) = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Fuzzy Sets Inherent Vagueness

Fuzzy Sets Generalization of Characteristic Functions

- What would you answer if I ask "Am I tall?".
- Does knowing that I am 6ft tall help?
- Not really. The problem lies in the meaning of the word "tall". I might be tall in Japan, but not in Holland.

Inherent Vagueness

Fuzzy sets offer a way of modeling Inherent Vagueness.

Central:

the generalization of the characteristic function $\chi_S : U \to \{0, 1\}$ of set S to membership function $\mu_S : U \to [0, 1]$.

 $\mu_{S}: U \rightarrow [0, 1]$ gives a *degree* of memberhip in the *fuzzy* set *S*.

Crisp Set Operators Definitions

Let *A* and *B* be two subsets of some set *U*. We define union, intersection, difference, and complementation using in terms of χ_A and χ_B as follows:

Definition

$$\chi_{A \cap B}(x) = \min(\chi_A(x), \chi_B(x))$$

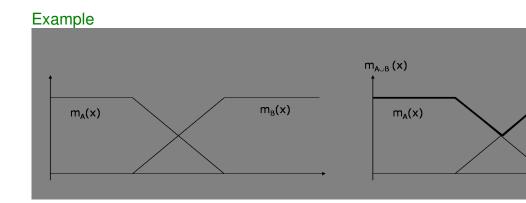
$$\chi_{A \cup B}(x) = \max(\chi_A(x), \chi_B(x))$$

$$\chi_{A-B}(x) = \min(\chi_A(x), 1 - \chi_B(x))$$

$$\chi_{A^c}(x) = 1 - \chi_A(x).$$

For fuzzy set operations substitute μ for χ .

Fuzzy Set Operations Example



Fuzzy Relations

Fuzzy Relations

Fuzzy Relations Crisp Composition

Definition

A fuzzy relation *R* from a set *X* to a set *Y* is a fuzzy set in the cartesian product $X \times Y$, i.e., μ_R is a function $\mu_R : X \times Y \rightarrow [0, 1]$. For $x \in X$ and $y \in Y$, the value $\mu_R(x, y)$ gives the degree to which *x* is related to *y* in *R*. For crisp binary relations $R \subseteq X \times Y$ and $R' \subseteq Y \times Z$ we can formulate their composition in terms of characteristic functions

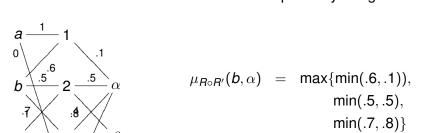
$$\chi_{R\circ R''}(x,z) = \max_{y\in Y} \{\min(\chi_R(x,y),\chi_{R'}(y,z))\}$$

Definition

Let *X*, *Y* and *Z* be three sets and let *R* and *R'* be two fuzzy relations from *X* to *Y* and *Y* to *Z*, respectively.

$$\mu_{R \circ R''}(x, z) = \max_{y \in Y} \{ \min(\mu_R(x, y), \mu_{R'}(y, z)) \}.$$

For fuzzy relations, the definition of composition is essentially identical to the crisp case but for the now expected substitution of μ for χ .



A Restricted Fuzzy Logic

Fuzzy Logic Defining the Fuzzy Logic Language

Recall:

For PL(U), the interpretation $I(\alpha, x)$ is given by

$$I(\alpha, \mathbf{x}) = \chi_{T(\alpha)}(\mathbf{x}).$$

Definition (Fuzzy Propositional Language)

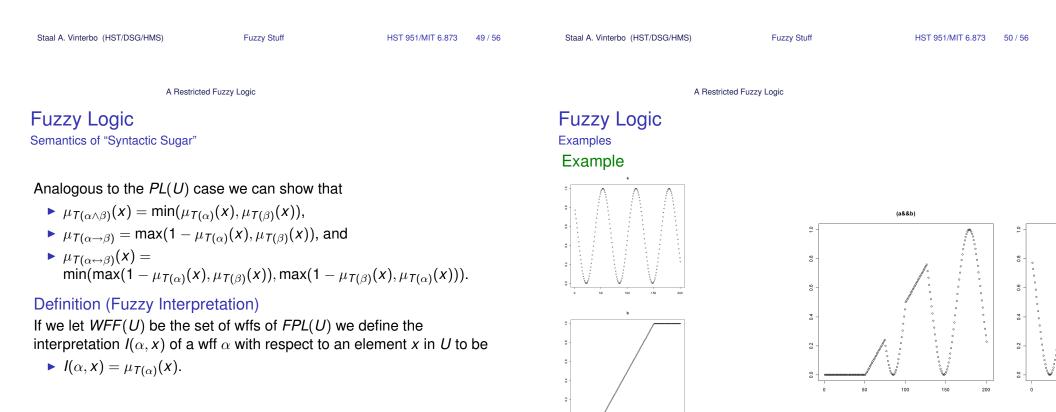
We define FPL(U), the language of propositions over fuzzy sets by substituting μ for χ in the definition of PL(U).

Fuzzy Logic Semantics

Definition (Fuzzy Truth Set)

We define the fuzzy truth set $T(\alpha)$ of wff α in PL(U) according to the following rules. For $p \in F$, $x \in U$, and wffs α and β :

- $\blacktriangleright \mu_{T(p)}(x) = p(x),$
- $\mu_{\mathcal{T}(\sim \alpha)}(x) = 1 \mu_{\mathcal{T}(\alpha)}(x)$, and
- $\mu_{T(\alpha \lor \beta)}(x) = \max(\mu_{T(\alpha)}(x), \mu_{T(\beta)}(x)).$



Fuzzy Rules Definition

There are different ways of defining fuzzy rules. We choose the following:

Definition

```
I(\beta, x) is computed as
```

$$I(\beta, \mathbf{x}) = I(\alpha, \mathbf{x})$$

according to the fuzzy rule ($\alpha \rightarrow \beta$).

We have learned

about the propositional language *PL*, with variable assignments given by *settings* and the truth value of an well formed formula (wff) given by the *interpretation*.

Summary

that a wff is valid if its interpretation is 1 for all possible settings, and is satisfiable if there exists a setting such that its interpretation is 1.

We have learned

- about the propositional language PL(U), over propositions over sets modeled by characteristic functions of subsets of U.
- that a *truth set* for a given wff is the set for which the interpretation is a characteristic function.
- that a propositional rule essentially is the application of modus ponens to an implication called the rule.

We have learned

- that fuzzy sets are a generalization of crisp sets by relaxing the characteristic function to a membership function giving the degree of membership in the set.
- that fuzzy propositions are just like the crisp counterparts,
- > and that we can define fuzzy rules just like their crisp counterparts.