Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

Algorithmic Complexity and Application to Problem Analysis

Staal A. Vinterbo

Harvard-MIT Division of Health Science and Technology

Decision Systems Group, BWH

Harvard Medical School

Nov 2005: HST 951/MIT 6.873 Class

Motivation

Problem

We have a new sequence of nucleotides. Which of the ones we already have does it match the best?

How do we address this problem?

- Has it been solved?
- Is there a problem that is close enough such that we can use it to obtain a solution?
- Is the problem feasible?
- How feasible?

Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	1 / 43	Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873
	Introduction				Introduction	
ntroduction				Introduction		
Algorithms and Computational M	Model			Computational Model		
Definition (Program) A finite sequence of comp	outational instructions.			Convenient: present prog	rams in a "Pascal" like	e language.
Definition (Computational	Model)			An abstract "Pascal" mach	nine, composed by a	control and processi
The abstract representatio	on of a device that can	execute programs.		unit able to execute "Pasc locations identified by all v	al" statements, and a variable and constant	set of memory identifiers defined in
				the algorithm.		
Definition (Algorithm)						

Introduction

Introduction

Computational Model: Algorithm Example

Introduction **Computational Model Cost**

Example

EXP()	x, y)
(1)	<i>r</i> ← 1
(2)	while $y \neq 0$
(3)	$r \leftarrow r * x$
(4)	$y \leftarrow y - 1$
(5)	return r

Uniform Cost

We also assume that all memory locations have the same size, and that all values involved in the computation are not larger than that they can be stored in a memory location.

Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	5 / 43	Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	6 / 43
	Introduction				Preliminaries		
Introduction Computational Model: Example				Preliminaries What quantities for Algorithms'	?		
Example Our program EX has cost $2 + 3y$.	P(<i>x</i> , <i>y</i>)			We need to decide Execution cost 			
Example				computational stememory used	eps: the "dominant" oper	ration	
Alternative: logarithmic co $a \leftarrow 5 + v$ has a cost proportional with	st: th the sum of logarithms	s of values involve	ed:	Input size, which cha whose growth towar	aracteristic parameter ds infinity gives asymp	describing the input ptotic computation cc	is it ost.
	$\log 5 + \log v $		_				

Preliminaries

Preliminaries Big O Notation

$$egin{aligned} O(g(n)) &= & \{f(n) | \text{there exists } c > 0 ext{ and } n_0 > 0 ext{ s.t.} \ & 0 \leq f(n) \leq cg(n) ext{ for all } n \geq n_0 \} \ o(g(n)) &= & \{f(n) | \text{for any } c > 0 ext{ there exists } n_0 > 0 ext{ s.t.} \ & 0 \leq f(n) < cg(n) ext{ for all } n \geq n_0 \} \ \Omega(g(n)) &= & \{f(n) | \text{there exists } c > 0 ext{ and } n_0 > 0 ext{ s.t.} \ & 0 \leq cg(n) \leq f(n) ext{ for all } n \geq n_0 \} \end{aligned}$$

- O(g(n)) the set of functions that are asymptotically bounded from above by *g*.
- Ω(g(n)) the set of functions that are asymptotically bounded from below by g.

Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	9 / 43
	Preliminaries		
Preliminaries Big O Notation			
Example			
Black – $x^2 - x$, blue –	x^2 , red – $x^2/2$.		- 1

Preliminaries Big O Notation

Example

What is
$$x^2 - x$$
?

$$x^2 - x \le x^2 \text{ for } x_0 > 0 \Rightarrow x^2 - x \in O(x^2)$$

$$cx^2 \le x^2 - x \Rightarrow$$

$$c \le \frac{x^2 - x}{x^2} = 1 - \frac{1}{x} \xrightarrow{x \to \infty} 1 \Rightarrow$$

$$cx^2 \le x^2 - x \text{ for } c = 1/2 \text{ and } x_0 = 2 \Rightarrow$$

$$x^2 - x \in \Omega(x^2)$$

Staal A. Vinterbo (HST/DSG/HMS)

Complexity

Preliminaries

HST 951/MIT 6.873 10 / 43

Preliminaries Big O Notation

We had that $x^2 - x \in O(x^2) \cap \Omega(x^2)$. In general

 $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$

The set $\Theta(g(n))$ is then the set of functions for which *g* is a *tight* asymptotic bound.

 o(g(n)) – the set of functions for which g is a lower bound that is not tight.

Preliminaries

Boundedness

Further we say that a function *f* is *polynomially bounded* if

Preliminaries

$$f(n) \in O(n^k) = n^{O(1)}$$

for some constant *k*, and we say that *f* is *polylogarithmically* bounded if

$$f(n) \in O((\ln n)^k) = \ln^{O(1)} n$$

for some constant k. As we have that

$$(\ln n)^a \in o(n^k)$$

for any constant k > 0, we have that polylogarithmically bounded functions grow slower than polynomial functions.

Preliminaries Other Useful Equalities

Using Stirling's approximation we have that

$$n! = o(n^n)$$

ln(n!) = $\Theta(n \ln n).$

We further have that

$$O(1) \subseteq O((\ln n)^k)) \subseteq O(n^k) \subseteq O(2^k) \subseteq O(n!) \subseteq O(n^n)$$

for some constant k > 0.

Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	13 / 43	Staal A. Vinterbo (HST/D	SG/HMS)	Complexity	HST 951/MIT 6.873	14 / 43
Analysis of Algorit	alysis of Algorithms			Analysis of	Analysis of Alg Algorithms	jorithms		
Merge two sorted list l_1 (1) if ISEMPTY(l_1) (2) return l_2 (3) if ISEMPTY(l_2) (4) return l_1 (5) if ISLESSEQUAL	and l_2 into a single sorte (FIRST(l_1), FIRST(l_2))	d list. Merge(<i>I</i> ₁	, l ₂)	MERGE (1) (2) (3) (4) (5) (6) (7)	(<i>I</i> ₁ , <i>I</i> ₂) if ISEMPTY(<i>I</i> ₁) return <i>I</i> ₂ if ISEMPTY(<i>I</i> ₂) return <i>I</i> ₁ if ISLESSEQUAL(return (APPEND((First(I1),First(I2)) ND(List(First(I1)),I (List(First(I2)),Mei) Merge(Rest(1,),12))) rge(1,,Rest(12))))	,
 (6) return (APPE (7) return (APPEND We assume that all thes of computational steps, 	ND(LIST(FIRST(I_1)),MER (LIST(FIRST(I_2)),MERGE se functions can be done i.e., $\Theta(1)$ steps.	GE(REST $(I_1), I_2)$)) $(I_1, REST(I_2))))in a constant num$	ber	• $ l_1 + l_2 =$ • $n = 1$: all v • $n \neq 1$: $\Theta(1)$ • $T(n) = \begin{cases} 0 \\ 0 \\ 0 \\ 0 \end{cases}$	$= n, T(n) - num$ we have to do is $1) + T(n - 1)$ $\Theta(1)$ $T(n - 1) + \Theta(1)$	ber of steps need s return non-emptricity for $n = 1$,) for $n > 1$.	ed to merge. y list, $T(1) = \Theta(1)$.	
Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	15 / 43	Staal A. Vinterbo (HST/D	SG/HMS)	Complexity	HST 951/MIT 6.873	16 / 43

Analysis of Algorithms

Analysis of Algorithms

Let us see what happens if we substitute a number for *n*.

$$T(4) = T(3) + \Theta(1)$$

= $(T(2) + \Theta(1)) + \Theta(1)$
= $((T(1) + \Theta(1)) + \Theta(1)) + \Theta(1)$
= $(((\Theta(1)) + \Theta(1)) + \Theta(1)) + \Theta(1)$
= $4\Theta(1)$

We see that $T(n) = n\Theta(1) = \Theta(n)$, meaning that $MERGE(I_1, I_2)$ for a combined length of I_1 and I_2 of *n* requires $\Theta(n)$ steps.

Complexity

Analysis of Algorithms MergeSort

MergeSort(*I*)

- (1) **if** ISEMPTY(*I*)
- (2) return /
- (3) **if** IsSingleton(*I*)
- (4) return /
- (5) return (MERGE(
- (6) MERGESORT(FIRSTHALF(*I*)),
- (7) MERGESORT(SECONDHALF(*I*))))

$$T(n) = \begin{cases} \Theta(1) & \text{for } n = 1, \\ 2T(n/2) + \Theta(n) & \text{for } n > 1. \end{cases} = \Theta(n \ln n)$$

Think binary tree...

```
Staal A. Vinterbo (HST/DSG/HMS)
```

Complexity

HST 951/MIT 6.873 18 / 43

Analysis of Algorithms

Analysis of Algorithms Space Complexity: Merge

 $MERGE(I_1, I_2)$

(1) **if** ISEMPTY(I_1)

- (2) return *l*₂
- (3) **if** ISEMPTY(*l*₂)
- (4) return l_1
- (5) **if** ISLESSEQUAL(FIRST(l_1),FIRST(l_2))
- (6) **return** (APPEND(LIST(FIRST(l_1)), MERGE(REST(l_1), l_2)))
- (7) **return** (APPEND(LIST(FIRST(*l*₂)),MERGE(*l*₁,REST(*l*₂))))

1. Arguments are given by reference.

$$\mathcal{S}(n) = egin{cases} \Theta(1) & ext{for } n=1, \ \mathcal{S}(n-1) + \Theta(1) & ext{for } n>1. \end{cases}$$

Complexity

 $S(n) = \Theta(n)$

Staal A. Vinterbo (HST/DSG/HMS)

HST 951/MIT 6.873 20 / 43

Analysis of Algorithms

Similarly to time complexity, we can analyze algorithms in terms of space requirements. For input size n, S(n) denotes the number of memory locations we need.

Staal A. Vinterbo (HST/DSG/HMS)

HST 951/MIT 6.873

17/43

Analysis of Algorithms

Space Complexity: Merge

$MERGE(I_1, I_2)$

- (1) **if** ISEMPTY(I_1)
- (2) return l_2
- (3) **if** $ISEMPTY(l_2)$
- (4) return l_1
- (5) **if** IsLessEqual(First(l_1),First(l_2))
- (6) **return** (APPEND(LIST(FIRST(l_1)), MERGE(REST(l_1), l_2)))
- (7) **return** (APPEND(LIST(FIRST(l_2)), MERGE(l_1 , REST(l_2))))
- 2. Arguments are given by value (copied).

 $S(n) = \begin{cases} \Theta(1) & \text{for } n = 1, \\ S(n-1) + \Theta(n) + \Theta(1) & \text{for } n > 1. \end{cases}$ $\sum_{i=1}^{n} i = n(n+1)/2 \Rightarrow S(n) = \Theta(n^2)$ What does that do to T(n)? Staal A. Vinterbo (HST/DSG/HMS) Complexity HST 951/MIT 6.873

Analysis of Problems P and NP

Analysis of Problems

Relational View

Example

Binary relation R_{Sorted} on the set of finite lists of numbers.

• (I, I_s) is in R_{Sorted} if and only if I_s is the sorted version of I.

Example

 $I - n \times m$ matrices M

$$S - 2^{\{1,2,...,n\}}$$

 $(\mathit{M}, \mathit{C}) \in \mathit{R}_{\mathsf{Cover}} \subseteq \mathit{I} \times \mathit{S}$ if and only if

$$\sum_{i=C} M[i,j] > 0$$

for all $j \in \{1, 2, ..., m\}$.

21/43

Analysis of Problems

The complexity of a problem can be described in terms of the time and space complexity of the algorithms that solve the problem.

An important property of an algorithm is the worst case time expenditure for a given problem size, i.e., the maximum time the algorithm takes over all problems of at most a given size.

Staal A. Vinterbo (HST/DSG/HMS)

Complexity

HST 951/MIT 6.873 22 / 43

Analysis of Problems P and NP

Analysis of Problems

Definition (NP-Relation)

 $R \subseteq I \times S$ is an NP-relation if the characteristic function χ_R of R is computable in polynomial time in |x| for all $x \in I$.

Definition (P-Relation)

An NP relation $R \subseteq I \times S$ is an P-relation if we can compute $y \in R(x)$ or determine that $R(x) = \emptyset$ in polynomial time in |x| for all $x \in I$.

Problems as NP-relations

- I problem instances
- S solutions

P-relations are problems that are *solvable* in polynomial time, NP-relations are problems that are *checkable* in polynomial time.

Analysis of Problems Big Question

BIG Question

P = NP?

Not conclusively answered, although most believe it not true.

Analysis of Problems

Example (SAT)

Let V be a finite set of boolean variables, and let a *literal* be a boolean variable or its negation. Further let a be a set of literals. A clause is satisfied by a variable value assignment (setting) if at least one of the literals evaluates to true. If we let

- $I = 2^{C} \emptyset$, where *C* is the set of all clauses over *V*,
- S be the set of all variable value assignments, and
- $R \subseteq I \times S$ such that R(x) is the set of all variable value assignments such that all clauses in *x* are satisfied.

Then *R* is the SAT NP-relation.

Analysis of Problems P and NP

Analysis of Problems **NP-Completeness**

Definition (Polynomial time reduction)

If f and g are both computable in polynomial time, we call a reduction (f,g) a polynomial time reduction, and use $R_1 \leq_p R_2$ to indicate that we have a polynomial time reduction from R_1 to R_2 .

Definition (NP-Complete NP-relation)

If $R \ge_p R'$ for all NP-relations R', then R is NP-Hard. If R is an NP-relation, R is NP-Complete.

NP-Complete NP-relations are the "hardest" NP-relations.

Analysis of Problems **NP-Completeness**

Transitivity of reductions

Note that \leq_{p} is transitive.

This means: reduction to one NP-complete relation is enough.

Cook's Theorem

Need a seed: Satisfiability is NP-complete (Cook 1971)

Staal A. Vinterbo (HST/DSG/HMS)

Complexity

HST 951/MIT 6.873 30 / 43

Analysis of Problems P and NP

Complexity

HST 951/MIT 6.873

29/43

Analysis of Problems

NP Completeness of 3-Sat

Staal A. Vinterbo (HST/DSG/HMS)

Example (3-SAT)

3-SAT is the SAT problem where clauses are restricted to be of cardinality 3.

Theorem (3-SAT is NP-complete)

3-SAT is NP-complete.

Proof.

Each $c = \{z_1, \ldots, z_k\}$ is transformed as (using fresh y):

	$\{\{z_1, y_1, y_2\}, \{z_1, \overline{y}\}\}$	$\{z_1, y_2\}, \{z_1, y_1, \overline{y}_2\}, \{z_1, \overline{y}_1, \overline{y}_2\}$	${}_{2}^{r}$ if k	= 1
	$\{\{z_1, z_2, y\}, \{z_1, z_2\}\}$	$, \overline{y} \} \}$	if <i>k</i>	= 2
$C \Rightarrow \langle$	с		if <i>k</i>	= 3
	$\{z_1, z_2, y\} \cup \{\{y_i, z\}\}$	$(i_{i+2}, \overline{y}_{i+1}) 1 \leq i \leq k-4\} \cup$	$\{\overline{y}_{k-3}, z_{k-1}, z_k\}$ if k	> 3
Staal A	Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6 873	31 / 43

Analysis of Problems **Optimization Problems**

Analysis of Problems Optimization problems

Definition (Optimization problem)

An optimization problem is a three tuple (R, m, \star) , where

- $R \subset I \times S$, *I* are instances, *S* are solutions,
- *m* is a function $m: R \to \mathbb{N}$,
- \star is an element of $\{\leq,\geq\}$.

Definition

For an optimization problem (R, m, \star) , the set R(x) is the set of feasible solutions for the instance x, m(x, y) is the measure of solution y of *instance* x, $m^*(x) = z$ such that z = m(x, y) for some $y \in R(x)$ and $z \star m(x, y')$ for all $y' \in R(x)$. Also, $y(x) = \{y \in R(x) | m(x, y) = m^*(x)\}$.

Analysis of Problems Optimization Problems

Analysis of Problems

This means that $m^*(x)$ is the optimal measure for problem instance x, and y(x) is the set of optimal solutions for problem instance x. Also, \star is called the *goal*, and the problem is a *minimization* problem if $\star = \leq$, and a *maximization* problem if $\star = \geq$.

Definition (NP-Optimization (NPO) Problem)

An optimization problem (R, m, \star) is an NPO problem if $R^n = \{(x, y) \in R | m(x, y) \star n\}$ is an NP-relation, and *m* is computable in polynomial time.

Analysis of Problems

Example (Vertex Cover)

If we let V be a universe of vertices

- *I* be the set of all graphs G = (V', E), where $V' \subseteq V$, and $E \subseteq V' \times V'$,
- $S = 2^V$, and
- $R \subseteq I \times S$ such that $S \in R(x)$ is such that for all $(u, v) \in E$, we have that $S \cap \{u, v\} \neq \emptyset$,

Then $(R, m(S) = |S|, \leq)$ is the *Vertex Cover* minimization problem.

```
      Staal A. Vinterbo (HST/DSG/HMS)
      Complexity
      HST 951/MIT 6.873
      33 / 43

      Analysis of Problems

      Optimization Problems

      Analysis of Problems

      NP-hard NPO problems
```

Definition (NP-hard NPO problem)

An NPO problem (R, m, \star) is *NP-hard* if R^n is NP-complete.

If we could find a polynomial time algorithm \mathcal{A} for (R, m, \star) , we can find $y \in R^n(x)$ or determine that $R^n(x) = \emptyset$ in polynomial time as follows: if $m^*(x) > n$ then $R^n(x) = \emptyset$, otherwise return $y \in y(x)$. This means that if (R, m, \star) is NP-hard, a polynomial time algorithm for this problem would mean NP = P. Hence, it is believed that there exist no polynomial time algorithm for NP-hard NPO problems.

Staal A. Vinterbo (HST/DSG/HMS)

Complexity

HST 951/MIT 6.873 34 / 43

Analysis of Problems Optimization Problems

Analysis of Problems Vertex Cover is NP-hard

Theorem

Vertex Cover is NP-hard

Proof.

Reduction from 3-SAT: $U = \{a, b, c, d\},\$ $C = \{\{a, \overline{c}, \overline{d}\}, \{\overline{a}, b, \overline{d}\}\}\$ *C* is satisfiable if and only if *G* in figure has a vertex cover of size K = |U| + 2 * |C| = 8 or less

Analysis of Problems Approximation properties

Analysis of Problems

Approximation properties

Definition (Performance ratio)

Let (R, m, \star) be an NPO problem. Given an instance x and $y \in R(x)$, we define the *performance ratio* of y with respect to x as

 $\mathcal{R}_R(x,y) = \max \left(egin{array}{c} m_R(x,y) \ m_R^*(x) \ m_R^*(x) \ m_R(x,y) \end{array}
ight).$

Definition (r-approximation algorithm)

We say that a polynomial time algorithm \mathcal{A} for problem $(R, m_R, *)$ is an r(n)-approximation algorithm if $\mathcal{R}_R(x, \mathcal{A}(x)) \leq r(|x|)$ for all instances x.

Analysis of Problems Vertex Cover Example

Example (Vertex Cover)

Graph G = (V, E). Find minimum cardinality $V' \subseteq V$ such that for all $(u, v) \in E$, we have that $V \cap \{u, v\} \neq \emptyset$.

Analysis of Problems Good and Bad News

Analysis of Problems Good and bad problems

Good News

Existence of *r*-approximation algorithm

Bad News

Proof of non-existence of r'-approximation algorithm, unless P(typically P = P = NP).

Good problems

FPTAS *r*-approximation possible in p(|x|)p'(1/(1-r)) time. Example: Maximum Knapsack.

Bad Problems

Problems where deciding whether R(x) is empty or not is NP-hard. Examples: Max(min)imum Weighted Satisfiability, Minumum {0,1}-integer programming.

HST/DSG/HMS) Complexity	HST 951/MIT 6.873	41 / 43	Staal A. Vinterbo (HST/DSG/HMS)	Complexity	HST 951/MIT 6.873	42 / 43
Analysis of Problems Approximation proper	ties					
ysis of Problems ion of hardness						

Results given so far are worst case analysis results.

on non-randomness of instance hardness?

Analysis of randomized instances by statistical mechanics and phase transitions between regions of hard and not-so-hard instances.