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Outline

Basic concepts & distributions
— Survival, hazard
— Parametric models
— Non-parametric models

Simple models
— Life-table
— Product-limit
Multivariate models
— Cox proportional hazard
— Neural nets



Case 1

Case 2

What we are trying to do

Years of

Variable 1 ~ Variable 2 survival
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\ Using these

Predict survival (or more
frequently predict the
probability of at least n
years of survival)

e and evaluate
performance on
new cases

e and determine
which variables are
Important



Censoring

Non-censored
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Non-censored
End study
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entry
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Survival function

Probability that an individual survives at least t, T is patient’s
survival

e SH)=P(T>1t)=1-F(®)

e Survival is cumulative, non-increasing function
e F(t) is cumulative distribution of death (failure)
e By definition, S(0) = 1 and S(w0)=0
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Unconditional failure rate

e pdfof T

o f(t) =Ilim ..., P(individual dies (t,t+At))/ At
 f(t) always non-negative

 Area below density is 1

o Estimated by
# patients dying in the interval/total patients

N




Conditional failure rate

e Hazard function
e h(t) =Ilim ,, ., P(survivor until t dies (t,t+At))/ At
* h(t) iIs conditional instantaneous failure rate

e Estimated by
# patients dying In the interval/survivors at t
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Parametric estimation

Example: Exponential
o f(t) = AeM

o S(t) =eM

e h(t)=A

S(1) h(t)
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Welibull distribution

 Generalization of the
exponential

e ForiA,y>0
o f(t) = yA(At)rL e M

h(t)

e S(t) = e’
e h(t) = yA(At) ¥1

S(t) »




S(t)

Non-Parametric estimation

Product-Limit (Kaplan-Meier)
S(t) =TI (n;-d)/ n

d; is the number of deaths in interval |
n, is the number of individuals at risk
Product is from time interval 1 to |
One interval per death time




Kaplan-Meier

« Example

« Deaths: 10, 37, 40, 80, 91,143, 164, 188, 188, 190,
192, 206, ...



Life-Tables

 AKA actuarial method
S(t) =TT (n, - d;)/ n,

d; is the number of deaths in interval |
n, is the number of individuals at risk
Product is from time interval 1 to |

« Pre-defined intervals | are independent of death times

s() Kaplan-Meier 0 \
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Life-Table

hazard

survival

density



Simple models



Multiple strata



Multivariate models

e Several strata, each defined by a set of
variable values

e Could potentially go as far as “one
stratum per case™?

e Can it do prediction for individuals?



Cox Proportional Hazards

 Regression model

e Can give estimate of hazard for a
particular individual relative to baseline
hazard at a particular point in time

e Baseline hazard can be estimated by,
for example, by using survival from the
Kaplan-Meier method or parametrically



Proportional Hazards

A = A ebxi

where A Is baseline hazard (ie, for the “baseline” —
usually the most common patient) and x; is covariate
vector for a specific patient i

Cox proportional hazards
hi(t) = ho(t) e Px

e Survival B
ePAl

Si(D) = [Se(D)]



Cox Proportional Hazards

hi(t) = hy(t) e Pxi
 From the set of m individuals at risk at time J (R;), the probability of
picking exactly the one who died is

h,(t) e Pxi
% hy(t) e Pm

e Then likelihood function to maximize to all J IS

o« LB =TII; (e PXi /2, € PXm)

« MLE uses LogLikelihood



Important detalls

Survival curves can't cross If hazards are
proportional

There is a common baseline h,, but we don’t need to
know it to estimate the coefficients

le, we don’t need to know the shape of hazard
function

Cox model is commonly used to interpret importance
of covariates (amenable to variable selection
methods)

It is the most popular multivariate model for survival

Testing the proportionality assumption is difficult and
hardly ever done



Estimating survival for a
patient using the Cox model

Need to estimate the baseline

Can use parametric or non-parametric
model to estimate the baseline

Can then create a continuous “survival
curve estimate” for a patient

Baseline survival can be, for example:
— Kaplan-Meier estimate



Example of survival estimates
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What if the proportionality
assumption Is not OK?

e Survival curves may

Cross

e Other multivariate

models can be built

e Survival at certain time

points are mogeled and

combined-® F--0-
Survival | <
o ol




Single-point models

e Logistic regression
 Neural nets

age
gender
blood pressur

cholestero
smoking
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weight



Problems

Survival
(%)

o DependenCy nonmonotoni
between intervals is WY

not modeled (no T

links between
networks)
° Year

e Nonmonotonic
S(1)=0.9 S(2)=0.6  S(3)=0.4 S(4)=0.3 S(5)=0.5  S(6)=0.3

curves may appear
e How to evaluate? %%% 92::% gié %
O O

patients
followed
for>1lyear >2years >3 years >4 years >5years >6 years

1 2 4 5 6

O input nodes: patient data

. output nodes: probability of survival in a given time point



Figures removed due to copyright reasons.

Please see Tables lll, V, VI and figures 6, 8, and 10 in:

Ohno-Machado, Lucila, and Mark A. Musen. "Modular Neural Networks for Medical
Prognosis: Quantifying the Benefits of Combining Neural Networks for Survival
Prediction."” Connection Science 9, no. 1 (March 1997): 71-86.



Accounting for dependencies

Survival (%)

e “Link” networks

=)
In some way to P
account for % B e \‘
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Year S(4)=0.2
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Figures removed due to copyright reasons.

Please see Tables lll, V, VI and figures 6, 8, and 10 in:

Ohno-Machado, Lucila, and Mark A. Musen. "Modular Neural Networks for Medical
Prognosis: Quantifying the Benefits of Combining Neural Networks for Survival
Prediction." Connection Science 9, no. 1 (March 1997): 71-86.



Survival without Coronary Disease

Test set Test set

Year of follow-up X p Area under the ROC curve  standard error
2 15,0118 0.0589 0.7038 0.0242
4 11.1380  0.1939 0.7117 0.0190
6 19.6175 0.0118 0.7352 0.0152
8 303247 0.0001 0.7337 0.0138

10 23.6363 0.0026 0.7333 0.0130

12 11.6443  0.1677 0.7448 0.0123

14 9.3273 03154 0.7752 0.0121

16 6.7588 0.5628 0.8059 0.0119

18 26.1660 0.0009 0.8275 0.0122

20 22.3739  0.0042 0.8374 0.0122

22 12,7683  0.1200 0.8324 0.0163




Figure removed due to copyright reasons.

Please see figure 10 in:

Ohno-Machado, Lucila, and Mark A. Musen. "Sequential versus standard neural networks
for pattern recognition: an example using the domain of coronary heart disease."

Comput Biol Med 27, no. 4 (Jul 1997): 267-81.



Summary

o Kaplan-Meler for simple descriptive
analysis

e Cox Proportional for multivariate prediction
If survival curves don’t cross

e Other methods for multivariate survival
exist: logistic regression, neural nets,
CART, etc.





