Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support, Fall 2005 Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

Motivation

Three Bioinformatics Problems

Staal A. Vinterbo

Harvard-MIT Division of Health Science and Technology

Decision Systems Group, BWH

Harvard Medical School

Nov 2005: HST 951/MIT 6.873 Class

Introduce bioinformatics through discussinb

- sequence alignment
- maximum parsimony phylogenetic trees
- haplotype tagging

- Advances in molecular biology and technology in this area
- \blacktriangleright lots of data \Rightarrow
- ► application of information technology ⇒
- bioinformatics

DNA

- polymer made up of nucleotides
- adenine (A), cytosine (C), guanine (G), and thymine (T), and
- abstracted as a string over $\Sigma = \{A, C, G, T\}$.

RNA

• another molecule abstracted as a string over $\Sigma = \{A, C, G, U\}, U$ = uracil.

DNA and RNA are parts of the reproductive machinery, and insight is warranted.

Definition (Sequencing)

process of determining the DNA and RNA sequences from organisms

Problem

Problem

evolutionary process does not necessarily preserve the exact location of the (somewhat changed) original sequence part.

I.e. do not know exactly how different sequences fit together.

Need:

alignment

Sequence Alignment

Alignment of Two Sequences

Let

- $x = x_1 \dots x_n$ and $y = y_1 \dots y_m$ strings over Σ ,
- Special symbol $\notin \Sigma$.

An *alignment* of *x* and *y*:

- ▶ pair of strings x' and y', |x| = |y| = k, $max(n, m) \le k \le m + n$ over $\Sigma \cup \{-\}$ such that
 - 1. at no position can the strings x' and y' both contain the special symbol -, and
 - 2. by removal of all occurrences of in both x' and y' we get x and y, respectively,

both hold.

Staal A. Vinterbo (HST/DSG/HMS)	Bioinf	HST 951/MIT 6.873	5 / 43	Staal A. Vinterbo (HST/DSG/HMS)	Bioinf	HST 951/MIT 6.873	6 / 43

Sequence Alignment

Sequence Alignment

Alignment of Two Sequences

Example

Consider sequences $\ensuremath{\texttt{CACT}}$ and $\ensuremath{\texttt{ACGCTT}}$. Three possibilities of aligning them are

C - A - C T A C G C T T and - C A - C T A C G C T T

Sequence Alignment

Alignment of Two Sequences

Let

d : Σ ∪ {−} → ℝ be a function that assigns a "distance" between the elements of Σ ∪ {−} such that for *a* ∈ Σ

d(a,-)=d(-,a)=g(a)

for some suitable function g.

Then

- d(a, b) = cost of mutating (changing) a to b
- ► g(a) = cost of inserting or deleting the letter a

Sequence Alignment

— C A C T —

ACGCTT

Alignment of Two Sequences

Sequence Alignment Alignment of Two Sequences

If we let A(x, y) denote the set of all alignments (x', y') of x and y, we can define

$$D(x, y) = \min_{(x', y') \in A(x, y)} \sum_{i=1}^{n} d(x'_i, y'_i)$$

as the cost of an optimal alignment of *x* and *y*.

Crucial Observation

The optimal alignment of *x* and *y* can end in one of three possible ways:

 $\ldots \quad x_n \qquad \ldots \qquad - \qquad \ldots \qquad x_n \\ \ldots \qquad - \qquad \qquad \ldots \qquad y_m \qquad \ldots \qquad y_m \qquad \ldots \qquad y_m \qquad .$

D(x, y) is the cost of the optimal alignment up to the (k - 1)st character plus the smallest cost of the three possibilities.

Then we have that

$$D_{i,j} = \min\{D_{i-1,j} + d(x_i, -), D_{i-1,j-1} + d(x_i, y_j), D_{i,j-1} + d(-, y_j)\}.$$

Bioinf

Alignment of Two Sequences

x = ACCGTAC and y = GCCTAA. If we let g = 1, d(a, a) = 0 for all a, and d(a, b) = 1 for all distinct a and b, the matrix D then becomes

Sequence Alignment Alignment of Two Sequences

Starting in the lower right hand corner, we notice that 2 + d(C, A) = 3, which is the number in our current position. Hence, we step to $D_{5,6}$ containing a 2. We now note that 2 + d(A, A) = 2, and we step to $D_{4,3}$. The choices we make along this traceback are indicated by the boxed entries in *D* above. Note that these choices are not unique, and that other optimal alignments are possible. Having made our choices, we can now start in the upper left corner and construct the alignment according to the step rules given above. The resulting alignment is

А	С	С	G	Т	А	С
G	С	С	_	Т	А	А

The above: Global alignment.

Alternative: Local Alignment

Basic Local Alignment Search Tools (BLAST) is a set of tools to perform *local* alignment: the search for similar segments of two sequences.

An alignment of *k* strings $x_1, x_2, ..., x_k$ over Σ is a *k*-tuple of strings $x'_1, x'_2, ..., x'_k$ over alphabet $\Sigma \cup \{-\}$, where $- \notin \Sigma$, of equal length *I* such that

- 1. for each position $i \in \{1, 2, ..., l\}$ there is a *j* such that the character in position *i* in x'_i is different from –, namely $x'_{i,i} \neq -$, and
- 2. deletion of from all x'_1, x'_2, \ldots, x'_k yields x_1, x_2, \ldots, x_k , respectively,

both hold.

Alignment of Multiple Sequences

Given an alignment x' and y' of length k of strings x and y, we define

$$\operatorname{SP}(x',y') = \sum_{i=1}^k d(x'_i,y'_i).$$

The measure SP is the sum of pairwise alignment costs. Let $M = (x'_1, x'_2, ..., x'_k)$ be an alignment of strings $x_1, x_2, ..., x_k$. Abusing notation slightly, we define

$$\operatorname{SP}(M) = \sum_{i < j} \operatorname{SP}(x'_i, x'_j)$$

as the sum of pairwise alignment cost of *M*.

Staal A. Vinterbo (HST/DSG/HMS)

Bioinf

HST 951/MIT 6.873 17 / 43

Sequence Alignment

Sequence Alignment

Center Star

Assume that *d* is such that for all $a, b, c \in \Sigma$ we have that d(a, b) = d(b, a) and $d(a, c) \le d(a, b) + d(b, c)$, i.e., *d* is symmetric and observes the triangle inequality. The center star method is as follows:

1. Find $c \in \{1, 2, \dots, k\}$ that minimizes

$$\sum_{i\neq c} D(x_c, x_i)$$

and set $M = (x_c)$

2. let
$$y = x_c$$

3. For all $j \in \{1, 2, ..., k\} - \{c\}$ in order,

- 3.1 add the gaps in y to x_i forming z
- 3.2 compute the optimal alignment (y', z') of y and z
- 3.3 add the newly added gaps in y to all sequences in M,

3.4 add
$$z'$$
 to M as x'_i , and

8.5 set
$$y = y'$$

HST 951/MIT 6.873

18/43

Sequence Alignment Alignment of Multiple Sequences

Given strings $x_1, x_2, ..., x_k$, the problem of finding *M* that minimizes SP(M) is NP-hard. Can use the *Center Star Method*, a 2-approximation algorithm.

Bioinf

Sequence Alignment

Sequence Alignment

Staal A. Vinterbo (HST/DSG/HMS)

A popular alternative in practice is ClustalW:

- 1. Determine all pairwise alignments between sequences and the degree of similarity between them
- 2. Construct a dendrogram
- 3. Combine the alignments from 1 in the order specified in 2

- Phylogeny = the evolutionary history
- At a molecular level, evolution can proceed by insertions, deletions, substitutions, inversions and transpositions
- A phylogenetic tree is a representation of evolution based on genetic sequences. Starting at a root, a branch represents a time where there is a divergence in the sequence.

The phylogenetic tree is often inferred from contemporary sequences, with internal nodes labelled according to the most plausible ancestral sequence.

Maximum Parsimony Phylogenetic Trees

Maximum Parsimony Phylogenetic Trees

Phylogenetic tree

Definition (Phylogenetic tree)

Let Σ be an alphabet, and let Σ^m denote the set of all strings of length *m*. Let $T \subseteq \Sigma^m$ be a finite set.

A *phylogenetic tree* over *T* is a tuple (G, I) consisting of a graph G = (V, E), and a vertex labeling function $I : V \to \Sigma^m$ such that

- G is a spanning tree of V,
- ► $T \subseteq I(V)$,
- ▶ the leaves of *G* are uniquely labeled by *T*.

Staal A. Vinterbo (HST/DSG/HMS)	Bioinf	HST 951/MIT 6.873	21 / 43	Staal A. Vinterbo (HST/DSG/HMS)	Bioinf	HST 951/MIT 6.873	22 / 43
Maximum Parsimony Phylogenetic Trees				Maximum Parsimony Pl	nylogenetic Trees		
Maximum Parsimony Phylogenetic Trees			Maximum Parsimony Phylogenetic Trees				

Maximum Parsimony Phylogenetic Trees

Example

Consider the sequences x = GAT, y = CAA and z = CCT. There are a number of ancestral relationships we can think of, among them are

- x is an ancestor of z and y,
- ► *z* is an ancestor of *x* and *y*,
- ► an unknown *w* is an ancestor of all three.

Maximum Parsimony Phylogenetic Trees Maximum Parsimony Principle

In order to choose between alternatives, we need to evaluate their plausibility. One principle is to choose the tree that incorporates the least evolutionary changes, i.e., the least number of mutations in the sequences along the branches of the tree. This principle is called the *maximum parsimony* principle.

Maximum Parsimony Phylogenetic Trees

Define the score $\sigma(G, I)$ of a phylogenetic tree (G, I) over T as

$$\sigma(G, I) = \sum_{(a,b)\in E} h(I(a), I(b)),$$

where h(I(a), I(b)) is the hamming distance between the labels I(a) and I(b).

Definition (Maximum Parsimony Phylogenetic Tree (MPPT)) A phylogenetic tree (G, I) over T that minimizes σ .

Bioinf

Maximum Parsimony Phylogenetic Trees

Example

Example

Maximum Parsimony Phylogenetic Trees

Steiner Trees

We recognize the MPPT problem as a an instance of the STP for the some unknown graph G' with (again unknown) terminals S such that $T \subseteq I(S)$.

- MST(T) is a 2-approximation for STP
- ▶ STP is \approx 1.55-approximable

This means that MST(T) is a 2-approximation for the MPPT problem.

Problem:

The application of steiner tree problem algorithms is sometimes problematic as the graph G' can be taken to have a labelling function with co-domain that includes Σ^m , and consequently can be *huge*.

Maximum Parsimony Phylogenetic Trees

Maximum Parsimony Phylogenetic Trees

Definition (Steiner Tree)

Staal A. Vinterbo (HST/DSG/HMS)

Let G = (V, E, w) be a graph with vertices V, edges E, and a non-negative edge cost function w. Any tree in G spanning a given set of *terminals* $T \subseteq V$ is called a *steiner tree* (over T).

Problem (Steiner Tree Problem (STP))

Let G = (V, E, w) be a graph with vertices V, edges E, and a non-negative edge cost function w. For terminals $T \subseteq V$, find a minimum cost steiner tree in G.

HST 951/MIT 6.873

25/43

We can define transformations on phylogenetic trees that do not increase the score of the tree, but have the potential to decrease it.

Maximum Parsimony Phylogenetic Trees

Transformations

Definition

Define the *consensus* of a collection A of strings from Σ^m as the set of strings

 $C_1 C_2 \cdots C_m$

where c_i is a character that occurs with the highest frequency in position *i* in the elements from the collection *A*.

Let cons(A) be an element from the consensus of A.

Further define the neighbors n(v) of $v \in V$ in *G* to be the set of vertices *w* such that $\{(v, w), (w, v)\} \cap E \neq \emptyset$.

Staal A. Vinterbo (HST/DSG/HMS)

Bioinf

HST 951/MIT 6.873 29 / 43

Staal A. Vinterbo (HST/DSG/HMS)

Bioinf

HST 951/MIT 6.873 30 / 43

Maximum Parsimony Phylogenetic Trees

Maximum Parsimony Phylogenetic Trees Transformations

Example

The consensus of {"abc", "acb", "aca", "bad"} is {"aca", "acb", "acc", "acd"}.

Maximum Parsimony Phylogenetic Trees

Maximum Parsimony Phylogenetic Trees

Proposition

Let (G = (V, E), I) be a phylogenetic tree over T. Then, for any $v \in V$ we have that if we let $A = n(v) \cup \{v\}$ then

$$\sum_{w \in n(v)} h(l(v), l(w)) \ge \sum_{w \in A} h(\operatorname{cons}(l(A)), l(w))$$

holds.

Proposition

Let $a, b, c \in \Sigma^m$ for some positive integer m. Then, a maximum parsimony phylogenetic tree over a, b and c is $\{(1,4), (2,4), (3,4)\}$, and the mapping function l is such that $l(\{1,2,3\}) = \{a, b, c\}$ and l(4) = cons(a, b, c).

Mutable and Immutable vertices

Given a phylogenetic tree (*G*, *l*) of *T* we can partition the vertices *V* into two classes, mutable \mathcal{M} and immutable \mathcal{I} . This partition must meet the following requirement: $T \subseteq I(\mathcal{I})$.

Staal A. Vinterbo (HST/DSG/HMS)

Bioinf

HST 951/MIT 6.873 33 / 43

Maximum Parsimony Phylogenetic Trees

Maximum Parsimony Phylogenetic Trees Transformations

Proposition

Let τ be one of the transformations s,m,d,k,c. The application of τ to phylogenetic tree (*G*, *I*), results in a phylogenetic tree with score at most that of (*G*, *I*).

Maximum Parsimony Phylogenetic Trees

We define the following transformations on a phylogenetic tree (G, I) of T. They are:

- s for all internal vertices v in turn, compute $c = cons(n(v) \cup \{v\})$, connect a new leaf w to v, change I such that I(w) = I(v) and I(v) = c,
- m for all immutable vertices v in turn, find $w \in V \cap I^{-1}(I(v))$ such that h(cons(I(n(w))), I(w)) is minimal, make $(I^{-1}(I(v)) \cap I) \{v\}$ mutable,
- k recursively delete all mutable leaves,
- d delete mutable vertices that have degree 2, connecting the two edge endpoints,
- c for all mutable vertices v in turn, set I(v) = cons(I(n(v))).

```
Staal A. Vinterbo (HST/DSG/HMS)
```

Bioinf

HST 951/MIT 6.873 34 / 43

Maximum Parsimony Phylogenetic Trees

Maximum Parsimony Phylogenetic Trees

Heuristic

Let APPROX be an algorithm that takes T as input and returns the phylogenetic tree (G, I) that corresponds to the minimum spanning tree over the terminals. We then define the following algorithm RETREE. Set T' = T.

- 1. $(G, I) \leftarrow \text{APPROX}(T')$
- **2.** $\boldsymbol{s} \leftarrow \sigma(\boldsymbol{G}, \boldsymbol{l})$
- 3. $(G, I) \leftarrow c(d(k(m(s(G, I))))))$
- 4. $T' \leftarrow I(G[V])$
- 5. if $\sigma((G, I) < s$ goto step 1
- 6. return (*G*, *I*)

Proposition

RETREE is polynomial in m|T| and guarantees a solution score at most twice the optimum.

Moreover: RETREE is usually better than APPROX alone.

Staal A. Vinterbo (HST/DSG/HMS)

Staal A. Vinterbo (HST/DSG/HMS)

Haplotype Tagging

Much of the population-wide variation of the human genome can be attributed to single nucleotide polymorphisms (SNPs), which are changes in single base pairs within the genome.

For the study of population genomics, SNPs can be used to measure linkage disequilibrium, an indication of how much more (or less) likely, compared to chance, certain combinations of neighboring SNP alleles are.

Due to linkage disequilibrium, the distribution of possible alleles at SNPs is not uniformly random, and some combinations of neighboring alleles occur more often than others. Such a combination of SNP alleles is called a haplotype, and a given set of SNPs can give rise to a wide variety of haplotypes.

Haplotype Tagging

Haplotype Tagging

It is an important problem to identify a subset of SNPs within a haplotype that allows the unique identification of all possible allele variations within a haplotype. If such a subset can be found, a haplotype can be uniquely identified by knowing only the allele values at a few SNP positions. SNPs that satisfy this requirement are called haplotype tagging SNPs (htSNPs).

Haplotype Tagging

Formal Problem Definition

We can think of the problem of haplotype tagging by a minimum cardinality set of (diallelic) SNPs as the problem of finding a minimum cardinality set of columns that lets us discern between the unique rows in a binary matrix M. This means that we want to identify as few columns as possible so that if two rows agree on these columns, then they are identical. Formally, this can be expressed as follows.

Let $H = \{h_1, h_2, ..., h_n\}$ be a set of haplotypes with associated SNP markers at positions $S = \{1, 2, ..., m\}$, and let S' be a subset of S. We define $h_i[S']$ to be the string consisting of marker values of haplotype h_i found at the positions in S'. We can view H as an $n \times m$ matrix over the set of possible SNP alleles values. Find a minimum cardinality set $S' \subseteq S$ such that $h_i[S'] = h_j[S']$ implies i = j.

Haplotype Tagging Complexity

Theorem (Vinterbo 2005)

The haplotype tagging problem is NP-hard but approximable within $1 + \ln((n^2 - n)/2)$ for n haplotypes but not approximable within $(1 - \epsilon) \ln(n/2)$ for any $\epsilon > 0$ unless NP \subset DTIME $(n^{\log \log n})$.

Staal A. Vinterbo (HST/DSG/HMS)	Bioinf	HST 951/MIT 6.873	41 / 43	Staal A. Vinterbo (HST/DSG/HMS)	Bioinf	HST 951/MIT 6.873	42 / 43
	Haplotype Tagging						
Haplotype Tagging	1						
Algorithm							
•							

Solve the minimum hitting set instance given by the discernibility matrix over *H*.