Binary Outcomes:

Many health outcomes, particularly those related to
mortality, morbidity, or disease prevalence, can be
summarized as a binary, or dichotomous, outcome (success
vs. failure, dead vs. alive, 1 vs. 0). Simple descriptive
analyses focus on the frequencies (%) of successes for various
groups of subjects.

The analysis of categorical outcomes has a long history,
beginning with 2 x 2 tables, to stratified 2 x 2 tables to test
for effect modification or control for confounding, and to
multivariate regression analysis of binary outcomes using
logistic regression. We begin by reviewing 2 x 2 tables and
then present an overview of logistic regression.
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2 x 2 Tables:

Consider a sample of N individuals randomly selected from
a population of interest. Cross-classify these individuals on
the basis of their outcome status and their exposure of
interest (treatment 1 vs. treatment 2, smoker vs. nonsmoker,
comparison group vs. control, etc.):

Disease

Yes No

Group 1| a b | ny

Group 2| c d | no

mi ma N



Let

D1
D2

risk of disease among Group 1 (exposed)

risk of disease among Group 2 (unexposed)

Then it is reasonable to estimate

afn) =af(a+b)
c/ng =c/(c+d)



Measures of Association: There are three commonly used

methods for comparing risks between two groups:

e Risk difference (or attributable risk)
RD = p—p
e Risk ratio (or relative risk)

RR = pi/p
e (Odds ratio (or relative odds)

OR = p1/(1—p1)

p2/(1 — p2)
odds of disease in group exposed to risk factor

odds of disease in group not exposed to risk factor



Example: Newburger, Jonas, Wernovsky, Wypij, et al.
(New England Journal of Medicine, 1993) present results from a
clinical trial comparing two surgical treatments, DHCA

(deep hypothermic circulatory arrest), and LFB (low-flow
bypass) for repair of TGA (transposition of the great arteries):

Seizures *
Yes No
Treatment DHCA 10 77 ny, = 87
Group LFB 1 82 ny = 83
m; =11 my =159 | N =170

* observed clinical seizures within 7 days post-op.



Specifying a little more notation:

Treatment

Group

where

Seizures

Yes No

DHCA | Y1 =10 77 | n; = 87

P1
P2

LFB

Il

Yo =1 82 | no = 83

Bln(ﬂl y P1 )
Bin(nsg, p2)

P(seizures in DHCA group)
P(seizures in LFB group)



Then we have

p1 =Y /n =10/87 = .115
pr=Ya/nyg =1/83 = .012

Thus it appears that seizures are more likely if you are
assigned to the DHCA group than the LFB group. But is this
difference significant?



Let’s estimate our three measures of association:

Risk difference:

RD = p)—pg
10 1

= — ===

87 83 o

Thus the difference in the risk of seizures in the DHCA
group compared to the LFB group is .103, or 10.3%.



Risk ratio:

RR = p\/p
(10/87) / (1/83) = 9.54

Thus the risk of seizures in the DHCA group is 9.54 times
higher than the risk of seizures in the LFB group.



Odds ratio:

pa/(1 — P2)
T 1 10/87 10
Odds in DHCA = P el O
o BfOUP = 1 /et 1
Odds in LFB group = P2 _ l/ﬁ _1 — 012

1-py 82/83 82

Thus, for the DHCA group, the odds are .130 to 1 (or 1 to 7.7)
that an infant will develop seizures. (In general, an infant
will not develop seizures).



Similarly, for the LFB group, the odds are .012 to 1 (or 1 to 82)
that an infant will develop seizures.

Then
. 10/77 1082

B = 1/82  1-77 = 1o

Thus the odds of developing seizures is 10.65 times higher
for the DHCA group than the LFB group.

Note: The odds ratio is the only measure of association that
can generally be estimated with retrospective case-control
studies. But all three measures of association can be
estimated in cohort studies, clinical trials, or cross-sectional
designs.



¢ The estimate of the odds ratio can be put in the form

~ a-d
U=t

leading to this estimator being called the cross-
product ratio.

e More formal comparisons demand either hypothesis
testing or confidence intervals.



Pearson Chi-square test: A method of testing the hypothesis

of no association in a 2 x 2 table is with the Pearson y? test.

Recall the observed counts:

DHCA
LFB

Seizures
Yes No
10 77 n; = 87
1 82 ne = 83
my =11 my =159 | N =170

What would be the expected counts if Hy : p; = p2 was true?

If Hy was true, we would estimate

from the combined sample.

p= (10 +1)/(87 + 83) = 11/170 = .065



Under Hy, E(Y1) = n; - p so the expected cell count for the
top left hand corner is

11
E — . = ¢ — = .
11 = 87 -p =87 170 5.629

and similarly for the remaining cells. In general, we have that

E;; = expected cell count for row i, column j

it" row total - j** column total
table total




Thus, the expected counts for each cell are given by:

87-11 87-159 __

8111 — 5.629 | 80189 — 81.371 | 87

83-11 83-159 __

841 — 5371 | 815 - 77,629 | 83
11 159 170




The Pearson Chi-Square test assesses how well the observed
counts compare with the expected counts under the null
hypothesis. If the discrepancies are small, we would have no
evidence to reject Hp, while if the discrepancies are large, we
would reject Hy. The test statistic is given by:

2, 0y — Ey)?
- B

=2

1=1 =l

Oi; = observed cell count for row %, column j

E;; = expected cell count for row i, column j under Hp.



Alternatively,

xX*= Y, (O-E)’/E

all cells

This is called the chi-square test because the distribution of
the test statistic under Hy (no association) follows a
chi-square distribution with one degree of freedom (denoted

by x3).



Seizure example, continued:

» (10 — 5.629)* N (77 — 81.371)2
5.629 81.371
(1-5.371)%2 (82— 77.629)°
5371 77.629

o~
I

7.43

Using a computer package like STATA or SAS we find that
the p-value is given by

Py, (x* > 7.43) = 0.006



Fisher’s exact test:

Tests based upon x? distributions work well for large sample
sizes. Fisher suggested a more complicated test that is valid
even for small samples.

Using a computer package like STATA or SAS we find that
Fisher’s exact p-value is equal to 0.010. Since some of the cell
counts are small in the seizures example, it may be preferable
to use Fisher’s exact test for inferences. One rule of thumb is
to always use Fisher’s exact test if any of the expected cell
counts is less than 5. For large samples, Fisher’s and
Pearson’s tests should give similar results.



Interval Estimation of our Measures of Association: In most

applications we are more interested in the point and interval
estimation of the risk difference, relative risk, or odds ratio
than in hypothesis testing.

CI for the Risk Difference or Attributable Risk:

D D D D
FlY ngn or FElal|b|mn
E Y2 79 E c | d n9
RD = p)—p2

- ) Y; Y, a C
RD Pl p2 e o E— T —— —
ny MNg Ny No



One can show that an approximate two-sided 100(1 — a)%
confidence interval for RD is given by:

R'D:bzl_%\/plm +P2¢I2

ni 2

or

ny n;

A - b - d
RD + .Zl_% \/anﬂ 4 Cn3
1 2

RAD:I:zl_%\/YI(nl - 1) . Yo(ny — Y2)

or




Seizures example, continued:

3 10/87 = .115
D2 1/83 = .012

Eal

RD

p1 — P2 = .103

A 95% Cl for the RD is given by:

(-115)(.885)  (.012)(.988)

103 £ 1.96 a7 33

= (.032,.174)

Since 0 is not included in the CI for the RD, we conclude that
we have significant differences (at the two-sided 0.05 level).



Confidence Interval for the Relative Risk or Risk Ratio:

RR = pi/p
RR = 1 no association between disease and exposure
RR 1 positive association between disease and exposure

>
RR < 1 negative association between disease and exposure

ir = am=(0) /() = () / ()




Using a natural logarithm transformation yields an
approximate two-sided 100(1 — «)% confidence interval for

log RR as follows:
; a1 g2
St mpr  nep2-
or
5 n — Y) ny — Yo
log RR + zl”%\/nl Y, + g
or

. b d
logRR:tzl_%\/;'m + 5 0

We exponentiate the CI for log RR to construct a CI for the
RR.



Seizures example, continued:

pr = 10/87 = .115

Pa 1/83 = .012
RR pL/p2 = 9.54
2.26

log RR

A 95% Cl for the log(RR) is given by:

885 988

220 1.9\ ety T E3)012)

= (.22,4.29)



Exponentiating to get a 95% CI for the RR gives:

(%2, e'9) = (1.25,72.9)

Since 0 is not in the CI for log RR, or equivalently, since 1 is
not in the CI for the RR, we infer that the risk of seizures is
higher in the DHCA group than in the LFB group, since we
strongly suspect that RR > 1.



Confidence Interval for the Odds Ratio or Relative Odds:

_p/(1=p)
OR= lll —22)

OR = 1 noassociation between disease and exposure
OR > 1 positive association between disease and exposure
OR < 1 negative association between disease and exposure

or - P/(1-p) M/m)/((m - Y1)/m)
p2/(1 —p2)  (Ya/n2)/((n2 — Y2)/n2)
i/im —Y) _a/b _ad
Ya/(no —Ys) ¢/d  be




Again using a natural logarithm transformation, an
approximate two-sided 100(1 — a)% confidence interval for
log OR is given by:

- 1 1
logOR £ zy_a — 4+ ——
2V mp1qy nep2q?
or

log OR + zl__;_\/

n 4 5
Yi-(m-Y) Yy-(n2-Yo)

or

log OR + zl_%\/— o —2.

or

3 1 1
IOEOR:EZI-—%\/E-I-B—I- = B



We again exponentiate the CI for log OR to construct a CI for
the OR. This method is known as Woolf’s method.




Seizure example, continued:

p1 = 10/87=.115
ps = 1/83 = .012
- n/(1—p1) ad
OR = = - = 10.65
p2/(1—p2) ~ be
logOR = 2.37
A 95% CI for log(OR) is given by:
237i196\/—+— L L 2 (29, 4.44)
182 VT



Exponentiating to get a 95% CI for the OR gives:

(e, e**) = (1.33,85.2)

Since 0 is not in the CI for log OR, or equivalently, since 1 is
not in the CI for the OR, we infer that the risk of seizures is
higher in the DHCA group than in the LFB group, since we
strongly suspect that OR > 1.



Logistic Regression Analysis

Logistic regression is used to model the probability of a
binary response as a function of a set of variables thought to
possibly affect the response (called covariates). Assume that
our primary interest is in relating the probability of disease
(success, death, etc.) to exposure as well as to other variables.



Example: Consider again the clinical trial comparing deep

hypothermic circulatory arrest (DHCA) vs. low-flow bypass
(LFB) in infants with transposition of the great arteries
(TGA). In this study, the binary response variable is given by:

{ 1 if infant develops seizures

0 if not



The primary “exposure” variable in the clinical trial is given

b 1 if the treatment group is DHCA
Y- I1 =
0 if the treatment group if LFB

But the other covariates may also be of interest, including;:

[ 1 ifthe preop neurologic exam was normal

2 if the preop neurologic exam was possibly

Iy = abnormal
3 if the preop neurologic exam was definitely
,. abnormal
r3 = duration of circulatory arrest (in minutes)

Thus covariates can be qualitative (discrete), ordinal (ordered
categorical), or quantitative (continuous).



Simple logistic regression (with a continuous covariate):

The modelled probability of seizures (p, = P(Y=1)) as a
function of minutes of circulatory arrest (z) is given by:

_ expla+fz)  evthT
T exp(a + fBz) 1+ exthz

Sometimes analyses with a single covariate are called
crude analyses, since there is no adjustment for any other

factors.

The logistic regression parameters are estimated using
maximum likelihood.




From a logistic regression package (e.g., STATA or SAS) we
find that:

G =0.063 5e(B)
&= -562 5e(a)

"t‘.i:n

0.022 minutes or slope term
1.

24  intercept or constant
term

With large samples, 8 follows an approximately normal
distribution with true mean (3 and an estimated variance of

@(B) = (5.¢.(#))2. Thus a 95% ClI for £ is given by:

B+1.9656.(8) = 0.063+1.96(0.022)
= (0.020,0.107)



Simple logistic regression (with a dichotomous covariate):

Suppose we are considering a study where the outcome
variable is disease/non-disease and the predictor variable is
exposed/ non-exposed, which we “code” as an

indicator variable, or dummy variable. Let

1 D 1 F
Y = ~ T = ~
{0 D {o E

and p, = Prob(Disease given exposure z)
= P(Y=1z) =z=0,1
Thus, p1 = probability of disease among exposed
po = probability of disease among non-exposed

Note: This is nothing more than the standard 2 x 2 table!



Suppose we use the logistic regression model with the
exposure variable coded as 0 or 1:

_ exp(a + Bz)
1+ exp(a + fz)

r

_ _exp(a+p)
Thus, p1 = 1 + exp(a + 3)
" exp(a)

T 1+ exp(a)



The [ coefficient corresponds to the logs odds ratio

comparing the exposed to the unexposed populations:

and hence
OR = exp(p)

Thus, if we estimate 3 from our data, we can estimate
log(OR) = f or OR = exp(3)

So far, we have examined single covariate models. We can
also adjust for other covariates or possible confounding
factors with multiple covariate models.



Example: Consider again the clinical trial on infants

undergoing cardiac surgery for repair of TGA:

Observed Clinical Seizures

Within 7 Postop Days
Yes No
Treatment DHCA 10 77 Ay =87
Group LFB 1 82 no = 83
1 for DHCA
If we code treatment =
0 forLFB

Then p; = 10/87 = .115 and pp = 1/83 = .012



Fitting the logistic regression model

exp(a + fz)

pI:l+exp(a+ﬁ:ﬂ) bt
We find that:
=237 5e(B) =106
& =-4.41 §e(a)=1.01

and a 95% ClI for 3 is given by:

2.37 + 1.96(1.06) = (.286, 4.44)



Also using the logistic regression results we find that

e

OR = exp(f)
= exp(2.37) = 10.65

is an estimate of the odds ratio measuring the association
between treatment and seizures. Because of the coding, this
odds ratio estimate compares DHCA (treatment = 1) to LFB
(treatment = 0), a one unit change in the covariate.

Similarly a 95% CI for the OR can be obtained by
exponentiating the the 95% CI for 3, namely:

(exp(.286)), exp(4.44)) = (1.33, 85.16),

giving results very similar to those obtained previously
using Woolf’s CI for the OR.



Odds ratios can also be estimated from logistic regression
models with continuous covariates. Let:

exp(a + fx)
1 + exp(a + fx)

p: = P(Y = 1|covariate z) =

and

exp(a + G(z + 1))
1+ exp(a + Bz + 1))

pz+1 = P(Y = l|covariatez + 1) =

Then the OR associated with a 1 unit increase in z is given by:

P1:+1/(1 - p::+1)
pz/(1 — pz)

MZTE exp(B-1) = ¢

OR



Similarly the OR associated with a 10 unit increase in z is
given by:
OR = exp(f8 - 10) = ¢'%,

etc. Point estimates and ClI’s for 3 can be transformed to get
point estimates and CI’s for the OR.



In the seizures example using minutes of circulatory arrest,
we estimate an odds ratio of 1.065 for a 1 minute increase in
the duration of circulatory arrest.

This may seem small, but the odds ratio associated with a 10
minute increase in the duration of circulatory arrest is
estimated to be exp(10 x 0.0633) = 1.88, and the estimate of
the odds ratio for a 30 minute increase is 6.68.



Instead of seeing whether the CI for the OR contains 1, the
Wald test offers a hypothesis testing approach. To test
Hy: 8 =0vs. Hy: 8 # 0, the test statistic given by:

Z = B <
()

follows a N(0, 1) distribution under Hj for large samples. We

reject Hy when Z is sufficiently large.

STATA gives p = .026 for the effect of minutes of circulatory
arrest by the Wald test in the seizures example. Since 8 > 0,
we infer that an increase in circulatory arrest leads to an
increase in the risk of seizures.



Some advantages of logistic regression:

e You can adjust for many covariates simultaneously.
e Handles qualitative and quantitative covariates.
e Allows direct tests of interaction (effect modification).

e You can assess potential confounders (fitting models
with and without confounders, and comparing “crude”
and “adjusted” estimates).

e You can obtain estimates and confidence intervals for
odds ratios (crude or adjusted).

e Mathematically convenient; easy software availability.

e High tech.



Some disadvantages of logistic regression:
e [s abstract and mathematical.

e May be a barrier between the investigator and the data;
you might get a better feel for what is going on with an
analysis using classical methods (e.g., Mantel-Haenszel
approach).

e Has implicit assumptions, which might be difficult or
awkward to check.

e Several models may appear to fit well, and it can be
difficult to select between these.

e Overconfidence in your final model; “I did an extensive
computer analysis; therefore, my conclusions must be

correct.”
e High tech.



Multivariate Analysis and Control for Confounding

Logistic regression can be used to model the probability of
response to many variables simultaneously. This can be used
to control for confounding of other variables on the
relationship between exposure and disease. By accounting
for the effects of the confounding variables as well as
exposure, we can separate out the effects that each of these

have on the probability of disease.
For now, consider a single binary exposure variable,

E= { 1 exposed
0 no exposed

and one confounding variable, X. This X could be
quantitative (continuous) or qualitative (discrete).



Let p. ; = P(Disease|exposure e and covariate z).

Example: If X = age in years, p; 40 = probability of getting

disease given an individual is exposed and is 40 years old.

The simplest model we can postulate relating both exposure
and X to disease is given by:

exp(Bo + Pie + Pax)
1 + exp(fo + fre + PBax)

Pez



Interpretation of 3 coefficients:

This model implies a common odds ratio e’ between disease
and exposure for all possible values of X. By including both
X and E in the model, we have separated out the effects of X
and F on disease from each other, and thus we are
controlling for (or adjusting for) the possible confounding
effects of X on the relationship between disease and
exposure.

Similarly, eP2 is the common odds ratio between disease and
a one unit increase in X, adjusting for F.



Effect Modification

Consider the following logistic regression model:

exp(fBo + e + B2z + B3z - €)
1+ exp(Bo + Bre + Bar + B3z - €)

Pex

This extends our model to include an interaction term,
allowing the odds ratio between disease and exposure to
vary across the levels of X (effect modification).



Thus, the effect of exposure on outcome now involves two
regression coefficients and the level of X.

For X = 0 one can show that the odds ratio between disease
and exposure exp(f; ), while for X = 1 the odds ratio
between disease and exposure is exp(f; + [3). The odds ratio
measuring the association between disease and exposure
varies according to the level of X. In general, the odds ratio
between disease and exposure is exp(8; + f3z).



Hence, we can use this model to test for effect modification
(interaction). If there was no effect modification, then 33
should equal zero, otherwise 33 would be different from
Zero.

A test for the homogeneity (equality) of the odds ratio across
levels of X could then be posed as testing the null
hypothesis:

Hg:ﬁ;;:ﬂ VS. HA:ﬁg#O.

We could use Wald’s test for this.



Categorical Predictor Variables with more than 2 Categories

Suppose we wish to model the probability of response, p, as a
function of a categorical variable having K > 2 categories,
labeled 0,1, 2,..., K — 1. Here we consider the categories to
have no specific order (e.g., eye color, race, state of residence).

A useful way to model this is again through the use of
dummy variables (or design variables or indicator variables).




For example:

D1 = I(Cat - 1)

D, = I(Cat = 2)

DK-—I = I(Cat = K — ].)

I

if subject falls in
category 1

if not

if subject falls in
category 2

if not

if subject falls in
category K — 1

if not



We refer to the category that is left out as the baseline or
reference group (or the 0** category).

Example of coding;:

Dummy Variables
Subject Category Dy Dy --- Dg_,
1 2

1 0
0 0
0 0
0 1

= W N
oS O = o



The logistic regression model that may be appropriate is

exp(Bo + 51 D1+ BaDa+ ...+ Bx—1Dk 1)

1+exp(Bo+51D1+ D2+ ...+ Bx-1Dk-1)



In this case, the odds ratio comparing category i to the
baseline category 0 is exp(/;), and can be directly read from
the logistic regression output. Similarly, confidence intervals
for these odds ratios are presented.

The odds ratio comparing category i to category j can be
shown to be exp(f; — ;). Confidence intervals for these are
more complicated.



Testing the null hypothesis of no association of the

probability of response among different categories:

Hy:5h=02=...=0k-1 =0

H 4 : One or more of 3, ..., 3x— are nonzero

Under H), the probability of response is the same in the K
categories. To test this hypothesis, we could use the
likelihood ratio test, comparing;:

~_exp(Bo)
Ho:p= 1 + exp(Bo)
H . p= exp .BU_I'»BIDI+ﬁ2D2+...+ﬁK_1DK_1)
A 1 +exp(Bo+ 1D+ oDy + ...+ Brk-1Dx—1)




Likelihood ratio tests (LRT):

An alternate way (compared to Wald tests) of testing
hypotheses in logistic regression models is with the use of a
likelihood ratio test. This test is specifically designed to test
between nested hypotheses, i.e., when a simpler hypothesis
(Hp) is nested under a more complex hypothesis (H4).
Basically, the more complex model must include all of the

parameters of the simpler model, plus one or more
additional parameters.

A particular advantage of the LRT compared to the Wald test
is that the LRT can be used to test more than one parameter
at a time.



An important point to note is that the two models being
compared must be based on exactly the same observations.
At a minimum, both models must be based on the same
sample size.

(Sometimes errors are made when some covariates have
missing values, so different models are based on different
sample sizes. In this case, you can only use the LRT on
samples of the same subjects.)



The LRT statistic is:

Ly,
Ly,

G = —-210g( ) =2(10gLHA —IOgLﬂ’G)
where log Ly, and log Ly, are the maximized loglikelihoods
under the alternative and null hypotheses, respectively.

The LRT will reject Hy when the test statistic, G, is large. If
Hj is true, the LRT statistic follows a x? distribution with m
degrees of freedom, where m is the difference in the number
of parameters between the nested models being compared.



Example: 170 infants undergo cardiac surgery to repair

transposition of the great arteries.

( 1 if infant has definite seizures
Y =¢ within 7 days postop
0 if not

\

Covariate of interest: Age at surgery (in days), which ranges
from 1 to 67 days in the study.

Suppose we break age at surgery into three categories:

Category Age Range

0 1-6 (baseline group)
1 7-14
2 > 15



D, = I(Age = week 2)
1 A8 0 if not

{ 1 ifage> 15

{ 1 if 7 <age <14

D, = I(Age > week 2)

0 1if not



From the STATA output, the estimated odds ratio of seizures
comparing high age to low age (the baseline group) is:

2222/(1 — .2222)
0229/(1 — .0229))

exp(2.497) = 12.14 (:

The estimated odds ratio of seizures comparing high age to
medium age is:

2222/(1 — 2222
exp(2.497 — 1.265) = 3.43 (= /( ))

0769/(1 — .0769)

The LRT comparing the model with the three age groups
(having one intercept and two indicator variables) to the
model with no covariates (having one intercept, thus one
parameter in total) is given by x3 = 8.14 (2 degrees of
freedom) giving p = 0.017.



Commonly used techniques for created dummy variables

from an underlying continuous covariate

e Equally spaced groups (age decades, etc.)

e Equal sized groups (say based on quintiles or quartiles of
the covariate)

e Subject matter considerations



Logistic regression model with one categorical and one
continuous predictor:

_ exp(fBo + B1 D1 + B2 D3 + B3x)
1 + exp(Bo + p1 Dy + B2 Dy + [3x)

p



If we add interaction terms:

exp(Bo + 1Dy + BoDar + B3z + B4 - Dy -z + (s - Dy - x)

P= 1+exp(ﬁo+,61D1+ﬁ2D2+ﬁ3$+ﬁ4-D1'$+ﬁ5-D2-I)



Model Building Strategies

Building multivariate logistic regression models can become
a bewildering experience. There can be many covariates and
interactions to consider, categorical vs. continuous
covariates, data transformations, possible confounding or
effect modifying factors, etc. I find it useful to work up
hierarchically, looking at increasingly more complex
structures of nested models. Subject matter knowledge,
common sense, and statistical hypothesis tests help decide
which variables are important in predicting response.



Some steps that may be helpful

e Begin with a careful univariate analysis of each variable
as a screening tool.

¢ Run a multivariate model including all variables thought
to possibly be important from the univariate analyses
(Hosmer and Lemeshow recommend including any
variable having p < .25 in a univariate analysis) and

other variables known to be important (treatment or
exposure variables, possible or known confounding
variables, etc.)



o Consider the importance of each variable in the
multivariate model, and look to see whether some
variables could be deleted or if others need to be added.

e Once you feel “close” to a final model, look more
carefully for possible interactions, recoding of variables
that might be helpful, addition of “quadratic terms” or
other transformations, etc.

e Use caution, logic, good sense, and biologic plausibility
when using model building techniques. Also, have fun
and be creative! There is as much an “art” to model
building as “science.”



Note: There may be more than one “final model.” In

complex data sets we may present the results of several
related models, or select between models using subject
matter considerations.

Note: “Statistical significance” is not the only reason to keep
a variable in the model. Always include explanatory
variables considered “essential” by subject matter
considerations. If a variable is thought to be a confounding
factor for the association between exposure and disease,
leave it in!



A Step-Up Procedure (Forward Selection)

1. Fit the intercept only model, or some other relatively
simple model that includes important covariates.

2. Fit all models that add an additional variable (or
interaction) to the model. Choose the model with the
best fit out of these. If this new model fits significantly
better, keep this variable in. If not, you might stop with
the current model.

3. Iterate (repeat) these steps until you want to stop.



Note: The specifics of determining how much improvement
a new variable adds can be changed depending on
circumstances, and can depend on statistical significance,
possible confounding bias, or subject matter considerations.

Note: A step-down procedure (backward elimination) starts
with a very complex model and then tries to delete variables
that help the least. Often people use a hybrid method, trying
to step up or down in tandem at each step.




Note: Letting the computer select your final model by some
arbitrary stepwise selection procedure can lead to disaster,
and I don’t recommend this. A variable important because of
a p-value may not have biologic significance or
interpretation, and the data analyst knows more about the
structure of the problem, meaning of important variables,
and questions of research interest than does a computer. A
computerized selection procedure might be helpful as part of
an initial screening procedure, but go back and try to build
the model yourself!



Goodness-of-Fit Testing

[t can be helpful to consider the goodness-of-fit of a
particular model you have selected. Goodness-of-fit tests
cannot choose between two competing models, and it is
possible for several different models to have reasonable
goodness-of-fit. In such situations, one must use logic and
subject matter considerations to choose between models.

Hosmer and Lemeshow developed a goodness-of-fit test that
generally works well when there are a lot of different
covariate patterns (e.g., as when you have continuous
covariates, etc.). The test is based on grouping observations
together that have similar p estimates, and is implemented in

STATA.



Logistic Regression for Retrospective (Case-control) Studies:

So far we have been modeling the probability of “success”
(disease, death, outcome) as a function of other variables (the
covariates). In a case-control study, the researcher chooses
the number of subjects with disease (cases) and the number
without disease (controls), so strictly speaking we cannot
model the probability of disease because we selected our
sample differentially by disease status (oversampling cases).

However, the relationship between disease and other
variables in a logistic regression model remain unaltered
except for the “constant” term when we use a case-control
design. Thus, logistic regression can still be used to estimate
the odds ratios between disease and exposures.



Extensions:

e Conditional logistic regression is an extension that can be

used when the data are “matched” on an individual
basis or in small groups, when it would not be feasible to
add enough parameters to adjust for the matching.

e Polychotomous logistic regression is an extension used

to model polychotomous outcome variables that take on
more than two categories (e.g.,0,1,2,0r 0, 1, 2, 3, etc.).
There are models appropriate for both unordered or
ordered outcomes (e.g., health status coded as excellent,
good, fair, or poor).



