Risk and Decision Analysis & Engineering Systems Analysis for Design

Course Introduction

IDS.332J and IDS.333

Welcome!

- > It's a pleasure to be with you in person
- > We will be covering much new material
- I look forward to learning with you
- > Hope to make some long-term friends

GOOD MORNING!

BONJOUR ! **¡BUENOS DIAS! GUTEN MORGEN!** SALAAM ALEIKUM ! O HAYO GOZAIMASU ! SELAMAT DATANG ! ΚΑΛΗ ΜΕΡΑ ! NI HAO MA! NAMASTE ! SHALOM ! **BOM DIA!**

R de N ©

Today's class has 4 parts

- 1. Brief Course Introduction
- 2. Review of Pre-Read Responses
- 3. Discussion of Paradigm Shift
- 4. Example Project

IDS.333J / IDS.332

- > You are at opening of 2 subjects!
- IDS.332J (also 1.146, 16.861) : Engineering Systems Analysis for Design 12 units
- IDS.333: Risk and Decision Analysis 6 units (at pace or 12 hours/week or ½ semester)
 - Methods, followed by applications in either
 - IDS.332 for those that continue in fall
 - IDS.330 6 unit Spring course Real Options for Product and System Design

> Which should you choose (if any)?

IDS.332 / IDS.333, IDS.330 Choice

- > Many students choose either
 - Combination of 6 unit Fall and Spring courses
 - Or 6 unit Fall course alone
- > Because
 - Possibly not yet ready for a deep dive into an application project
 - They'll appreciate that course ends in October and lightens end of semester heavier loads
 - In Spring they will be ready for deep dive application, to either thesis or other project
- See Canvas sites for full details for each

IDS.333 / IDS.332 / IDS.330 Choice

- IDS.332: Engineering Systems Analysis for Design, 12 unit, Full semester course
- The second half of the semester will be project oriented. It will combine lectures, seminar discussions, and personal coaching on project
- Restricted to students who
 - Can develop or have a suitable personal project
 - We explore this with discussion of "Initial Project Status" form

Content: First half of Semester

- Main Objectives:
 - To increase your awareness and appreciation for <u>WHY uncertainty matters</u> in engineering design, Being Proactive better than being Passive
 - 2. To give you tools to <u>analyze effect of uncertainty</u> <u>on performance of design</u>,
 - 3. To help you appreciate <u>how to choose best tool</u> <u>for your problem</u>, and
 - 4. To use the tools to <u>design flexible strategies</u> that will maximize overall expected performance

Content: Second Half of Semester

- > Overall objective:
 - To give you confidence in practical application of course material to engineering design
- > Topics
 - Drivers for Flexibility
 - Decision Rules
 - Real Options Theory
 - Multidimensional Choice
 - Case Examples
 - Creating a Strategy: Choice and Plan
- Project: Preparation of a Design or a Plan with
 Flexibility based on analysis of alternative options

Introduction of Teachers

- Richard de Neufville
 - Prof. of Engineering Systems, MIT Institute for Data, Systems, and Society (IDSS)
 - Civil Engineer by training, specialty in "airports"
 - International practice "every inhabited continent"
 - Sabbaticals: England, France, Portugal, Japan, Australia... and California
 - Rows and will participate in Head of Charles

Website: ardent.mit.edu

Introduction of Teachers

Aparna Kulkarni, Teaching Assistant

- Fellow, MIT System Design & Management
- Was Systems Engineer at Honeywell
- Worked 8+ years in Industrial, particularly Building, Automation
- Current interests: Innovations in energy industry, exploring System of Systems with emphasis on Smart Cities using platform solutions
- Academic background: Instrumentation and Controls Engineering

Logic of the Course

- > Engineering Systems exist in Uncertainty
 - Technical New Developments
 - Economy Boom, Crisis, Prices, Competition
 - Social New Regulations, Political Changes
- > Engineering Systems Need to Adapt
 - Take advantage of Opportunities
 - Avoid Hazards, Risks
- Flexibility is an Essential Part of Design
 - How do we identify, choose, and implement flexibility?
- Course shows *how* to Determine Answers

New Material

- > New Approach to Engineering Design
 - Recognizes Uncertainty and Use of Flexibility, thus Changes Engineering Design Process
- > Revolutionary possibilities
 - Explicit consideration of flexibility easily increases expected performance 30% !
- Related to "Real Options", but different
- > Procedures developed to fit engineering realities
 - Little historical data ; Rapid Procedures needed
- > Develops coherent road-map for strategic design

Objectives of First half of Semester

- 1. Conceptual framework for thinking about designing/decision-making under uncertainty.
- 2. Introduce useful tools for helping you think and do analysis in these situations.
- Course will present 4 elements:
- > Uncertainty
- > Value over Time
- Simulation over Spreadsheet
- Decision Analysis, Value of Information

Prerequisites

- Syllabus assumes:
 - comfort with basic calculus, probability, statistics
 - familiarity with some advanced concepts of Excel used in course
 - Presentation of necessary Excel material built into course

Courses "Flipped"; on Canvas

- In general "lecture material" distributed on web in advance, and discussed in-person classes
- Students review "lecture material" before class, and respond to it via "Pre-Read" forms
- Pre-Read responses form basis for in-person discussion of questions, and lead to further clarifications and extensions
- Pre-Read assignments are not graded but each earns full points for participation
- Canvas is course management system

THANK YOU FOR YOUR ATTENTION

NOW AVAILABLE FOR DISCUSSION

R de N ©

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

IDS.333 Risk and Decision Analysis Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.