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Today’s Topics

• Existence & Uniqueness of an Optimum 
Solution

• Karush-Kuhn-Tucker Conditions
• Convex Spaces
• Unconstrained Problems
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Disclaimer!

• This is not a classic optimization class ...

• The aim is not to teach you the details of optimization 
algorithms, but rather to expose you to different 
methods.

• We will utilize optimization techniques – the goal is to 
understand enough to be able to utilize them wisely.

• If you plan to use optimization extensively in your 
research, you should take an optimization class,
e.g. 15.093
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Learning Objectives

After the next two lectures, you should:

• be familiar with what gradient-based (and some 
gradient-free) optimization techniques are available

• understand the basics of how each technique works
• be able to choose which optimization technique is 

appropriate for your problem
• understand what to look for when the algorithm 

terminates
• understand why the algorithm might fail
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How to Choose an Algorithm?

• Number of design variables

• Type of design variables (real/integer, continuous/discrete)

• Linear/nonlinear

• Continuous/discontinuous objective behavior

• Equality/inequality constraints

• Discontinuous feasible spaces

• Initial solution feasible/infeasible

• Availability of gradient information

• Simulation code (forward problem) runtime
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Accelerator shape optimization (SLAC): Next generation accelerators have complex 
cavities that require shape optimization for improved performance and reduced cost.

Gradient-Based Optimization Applications

• Gradient-based methods can be used to solve large-scale, highly 
complex engineering problems

• Many recent advances in nonlinear optimization, e.g. in PDE-
constrained optimization, exploiting structure of the problem, adjoints, 
preconditioning, specialized solvers, parallel computing, etc.

• We will discuss some basic methods – not state-of-the-art

Earthquake inverse modeling (CMU Quake 

Project, 2003): Inversion of surface observations 
for 17 million elastic parameters (right: target; left: 
inversion result). Optimization problem solved in 
24 hours on 2048 processors of an HP 
AlphaServer system.

Examples from O. Ghattas (UT Austin) and collaborators.

Courtesy of Omar Ghattas. Used with permission.



7 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

Standard Problem Definition 
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• For now, we consider a single objective 
function, J(x).

• There are n design variables, and a total of 
m constraints (m=m1+m2).

• The bounds are known as side constraints.
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Linear vs. Nonlinear

The objective function is a linear function of the design 
variables if each design variable appears only to the first 
power with constant coefficients multiplying it.

1 2 3( ) 2 3.4J x x xx is linear in x=[x1 x2 x3]T

1 2 2 3( ) 2 3.4J x x x xx is nonlinear in x

1 2 3( ) cos( ) 2 3.4J x x xx is nonlinear in x
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Linear vs. Nonlinear

A constraint is a linear function of the design variables if each 
design variable appears only to the first power with constant 
coefficients multiplying it.

1 2 36 2 10x x x is linear in x

is nonlinear in x

is nonlinear in x

2
1 2 36 2 10x x x

1 2 36 sin( ) 2 10x x x
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Iterative Optimization Procedures

Many optimization algorithms are iterative:

where
q=iteration number
S=vector search direction

=scalar distance
and the initial solution x0 is given

The algorithm determines the search direction S
according to some criteria.

Gradient-based algorithms use gradient information to 
decide where to move. Gradient-free algorithms use 
sampling and/or heuristics.

1q q q qx x S
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Iterative Optimization Procedures

MATLAB® demo
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Gradient Vector
Consider a function J(x), x=[x1,x2,...,xn]

The gradient of J(x) at a point x0 is a vector of length n:
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Each element in the vector is evaluated at the point x0.
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Hessian Matrix
Consider a function J(x), x=[x1,x2,...,xn]

The second derivative of J(x) at a point x0 is a 
matrix of size n n:

Each element in the matrix is evaluated at the point x0.
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Gradients & Hessian Example

2 3
1 1 2 3 2 3( ) 3 6J x x x x x xx
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Taylor Series
Consider scalar case:

0 0
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The gradient vector and Hessian matrix can be approximated using finite 
differences if they are not available analytically or using adjoints (L8).
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Existence & Uniqueness of an 
Optimum Solution

• Usually cannot guarantee that global optimum is found

– multiple solutions may exist

– numerical ill-conditioning

start from several initial solutions

• Can determine mathematically if have relative minimum

• Under certain conditions can guarantee global optimum 
(special class of optimization problems or with global 
optimization methods)

• It is very important to interrogate the “optimum” solution
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Existence & Uniqueness: 
Unconstrained Problems

• Unconstrained problems: at 
minimum, gradient must vanish

|| J(x*)|| = 0
– x* is a stationary point of J
– necessary but not sufficient
– here A,B,C,D all have J=0

A B C D

J(x)

x

• Calculus: at minimum, second derivative > 0

• Vector case: at minimum, H(x*) >0 (positive definite)
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SPD Matrices
• Positive definiteness: yTHy > 0 for all y 0

• Consider the ith eigenmode of H: Hvi = ivi

• If H is a symmetric matrix, then the eigenvectors of H form 
an orthogonal set: vi

Tvj = ij

• Any vector y can be thought of as a linear combination of 
eigenvectors: y = aivi

• Then:

• Therefore, if the eigenvalues of H are all positive, H is SPD.
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Existence & Uniqueness: 
Unconstrained Problems

Necessary and sufficient conditions for a minimum 
(unconstrained problem):

1. Gradient must vanish

2. Hessian must be positive definite

J(x)

x

The minimum is only guaranteed 
to be a global optimum if H(x)>0 
for all values of x (e.g. simple 
parabola).

local minimum at x*
J(x*)=0

H(x*)>0
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Existence & Uniqueness:
Constrained Problems

At optimum:
– at least one constraint on 
design is active
– J does not have to be zero

In order to improve design:
– move in direction that decreases objective
– move in direction that does not violate constraints

Usable direction = any direction that reduces objective
ST J(x) 0

Feasible direction = a direction in which a small move will not 
violate constraints

ST gi(x) 0 (for all active constraints i)

Note that these conditions may be relaxed for certain algorithms.

A B C D

J(x)

x

constraint
optimum
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Lagrangian Functions

• A constrained minimization can be written as an 
unconstrained minimization by defining the Lagrangian 
function:

• L(x, ) is called the Lagrangian function. 
• i is the jth Lagrange multiplier

• It can be shown that a stationary point x* of L(x, ) is a 
stationary point of the original constrained minimization 
problem.

1 2

1
1 1

( , ) ( ) ( ) ( )
m m

j j m k k

j k

L J g hx x x x
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Lagrangian Example

2 2
1 2

1 2

min ( ) 3
s.t.  1

J x x

x x

x
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Karush-Kuhn-Tucker (KKT) Conditions

If x* is optimum, these conditions are satisfied:

1. x* is feasible

2. j gj(x*) = 0,  j =1,..,m1 and j 0

3. 

The Kuhn-Tucker conditions are necessary and 
sufficient if the design space is convex.
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KKT Conditions: Interpretation

Condition 1: the optimal design satisfies the constraints

Condition 2: if a constraint is not precisely satisfied, then 
the corresponding Lagrange multiplier is zero

– the jth Lagrange multiplier represents the sensitivity of the 

objective function to the jth constraint

– can be thought of as representing the “tightness” of the 

constraint

– if j is large, then constraint j is important for this solution

Condition 3: the gradient of the Lagrangian vanishes at 
the optimum
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Convex Sets

Consider a set, and imagine drawing a line connecting 
any two points in the set.

If every point along that line is inside the set, then the 
set is convex.

If any point along that line is outside the set, then the 
set is non-convex.

The line connecting points x1 and x2 is given by
w = x1 + (1- )x2, 0 1
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Convex Functions

Informal definition: a convex function is one that will hold 
water, while a concave function will not hold water...

convex concave neither

A function f(x) bounding a 
convex set is convex if:

f(x)

x
x1

f(x1)

x2

f(x2)

1 2 1[ (1 ] ( ) (1 )f f fx x x x
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Convex Spaces

Pick any two points in the feasible region. If all points on the line 
connecting these points lie in the feasible region, then the 
constraint surfaces are convex.

If the objective function is convex, then it has only one optimum 
(the global one) and the Hessian matrix is positive definite for all 

possible designs.

If the objective function and all constraint surfaces are convex, 
then the design space is convex, and the KKT conditions are 
sufficient to guarantee that x* is a global optimum.

In general, for engineering problems, the design space is not convex ...
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Convergence Criteria

Algorithm has converged when ...

no change in the objective function is obtained

OR the maximum number of iterations is reached

Once the “optimal” solution has been obtained, the KKT 

conditions should be checked.



Types of Optimization Algorithms

• Useful resource: Prof. Steven Johnson’s open-source 
library for nonlinear optimization
http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms

• Global optimization

• Local derivative-free optimization

• Local gradient-based optimization

• Heuristic methods
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Most methods 

have some 

convergence 

analysis and/or 

proofs.

http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms


Local Derivative-Free Optimization:
Nelder-Mead Simplex

Figures from 

http://www.scholarpedia.org/article/Nelder-

Mead_algorithm

• A simplex is a special polytope of N + 1 vertices in N 
dimensions

– e.g., line segment on a line, triangle in 2D, tetrahedron in 3D

• Form an initial simplex around the initial guess x0

• Repeat the following general steps:
– Compute the function value at each vertex of the simplex
– Order the vertices according to function value, and

discard the worst one
– Generate a new point by “reflection”

– If the new point is acceptable, generate a new
simplex. Expand or contract simplex size
according to quality of new point.

• Converges to a local optimum when
the objective function varies
smoothly and is unimodal, but
can converge to a non-stationary
point in some cases

• “fminsearch” in MATLAB
Courtesy of Saša Singer. Used with permission.



Global Derivative-Free Optimization: 
DIRECT

• DIRECT: DIviding RECTangles algorithm for global optimization 
(Jones et al., 1993)

• Initialize by dividing domain into hyper-rectangles

• Repeat
– Identify potentially optimal

hyper-rectangles
– Divide potentially optimal

hyper-rectangles
– Sample at centers of new

hyper-rectangles

• Balances local and global search
– Global convergence to the

optimum
– May take a large, exhaustive

search Image by MIT OpenCourseWare.
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Gradient-Based Optimization Process

Calculate J(xq)

Calculate Sq

Perform 1-D search
xq = xq-1 + Sq

x0, q=0

Converged? Doneyesno

q=q+1
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Unconstrained Problems:
Gradient-Based Solution Methods

• First-Order Methods
– use gradient information to calculate S
– steepest descent method
– conjugate gradient method
– quasi-Newton methods

• Second-Order Methods
– use gradients and Hessian to calculate S
– Newton method

• Methods to calculate gradients in Lecture 8.

• Often, a constrained problem can be cast as an unconstrained 
problems and these techniques used.
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Steepest Descent

Algorithm:
choose x0, set x=x0

repeat until converged:
S = - J(x)
choose to minimize J(x+ S)
x = x + S

Sq = - J(xq-1)

• doesn’t use any  information from previous iterations

• converges slowly
is chosen with a 1-D search (interpolation or Golden section)

- J(x) is the direction of 
max decrease of J at x
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Conjugate Gradient

S1 = - J(x0) 

Sq = - J(xq-1) + qSq-1

• search directions are now conjugate
• directions Sj and Sk are conjugate if  SjT H Sk = 0 

(also called H-orthogonal)
• makes use of information from previous iterations 

without having to store a matrix
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Geometric Interpretation

Figures from “Optimal Design in Multidisciplinary Systems,” AIAA 

Professional Development Short Course Notes, September 2002.

Adapted from: "Optimal Design in Multidisciplinary System." AIAA Professional Development Short Course Notes. September 2002.
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Newton’s Method

Taylor series:
0 0 01( ) ( ) ( ) ( )

2
T TJ J Jx x x x x H x x

0x x xwhere

differentiate:

at optimum J(x*)=0

0 0( ) ( ) ( )J Jx x H x x

0 0( ) ( ) 0J x H x x

10 0( ) ( )Jx H x x
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Newton’s Method

10 0( ) ( )JS H x x

• if J(x) is quadratic, method gives exact solution in one iteration

• if J(x) not quadratic, perform Taylor series about new point and 
repeat until converged

• a very efficient technique if started near the solution

• H is not usually available analytically, and finite difference is too 
expensive (n n matrix)

• H can be singular if J is linear in a design variable
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Quasi Newton
Sq = -Aq J(xq-1)

• Also known as variable metric methods
• Objective and gradient information is used to create an 

approximation to the inverse of the Hessian
• A approaches H-1 during optimization of quadratic functions
• Convergence is similar to second-order methods (strictly 1st order)

• Initially: A=I, so S1 is steepest descent direction
then: Aq+1 = Aq + Dq

where D is a symmetric update matrix
Dq = fn(xq-xq-1, J(xq)- J(xq-1), Aq)

• Various methods to determine D
e.g. Davidon-Fletcher-Powell (DFP)
Broydon-Fletcher-Goldfarb-Shanno (BFGS)
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One-Dimensional Search
(Choosing )

• Polynomial interpolation
– pick several values for 
– fit polynomials to J( )
– efficient, but need to be careful with implementation

• Golden section search
– easy to implement, but inefficient

• The one-dimensional search is one of the more 
challenging aspects of implementing a gradient-based 
optimization algorithm
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Polynomial Interpolation Example
1 1
2 2

J S

J dJ/d
0 10 -5
1 6 -5
2 8 -5

1 2 3 4(J c c c c

T1 2

1 2

x xdJ J J
J

d x x
S
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Lecture Summary

• Gradient vector and Hessian matrix
• Existence and uniqueness
• Optimality conditions
• Convex spaces
• Unconstrained Methods

The next lecture will focus on gradient-based 
techniques for nonlinear constrained optimization. 
We will consider SQP and penalty methods. These 
are the methods most commonly used for 
engineering applications.
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