

ESD.77

Multidisciplinary System Design Optimization Spring 2010

Barge Design Optimization

Anonymous MIT Students

ESD.77

What is a barge?

Flat bottomed vessel, typically non selfpropelled, used to carry low value, heavy or bulky items.

Motivation

•Interest in marine environment disciplines.

- •Opportunity to use and bring together previous academic experience.
- •A common ship design problem would be extremely complex to handle in one semester.

Image by MIT OpenCourseWare.

Tensile stress in keel

ESD.77

Problem Formulation

Design Variables		Lower Bound	Upper Bound	Unit
L	Length	90	140	m
В	Beam	20	35	m
D	Depth	4	9	m
t	Plate Thickness	12	28	mm

	Design Parameters	Value	Unit
v	Speed	10	knots
kg	Payload vertical center of gravity	1.2D	
lcg	Payload longitudinal center of gravity	0.5L	
ω	Peak spectral frequency	0.7	rad/sec
н	Significant wave height	2.5	m
ρ	Sea water density	1025	kg/m ³
ρ _{str}	Material thickness	7850	kg/m ³

Design Objective is to maximize payload (P) s.t.

Inequality Constraints						
N<60	Number of occurences of green water on deck per hour					
T<6m	Draft					
GM>0.15m	Metacentric height					
σ _{k.sag} <250MPa	Keel stress at sagging wave					
$\sigma_{k,hog} < 250 MPa$	Keel stress at hogging wave					
$\sigma_{d,sag}$ < 250 MPa	Deck stress at sagging wave					
σ _{d,hog} <250MPa	Deck stress at hogging wave					

Barge cross-section

Input/Output Diagram

Modeling in MATLAB Multidisciplinary Feasible (MDF) Model

- Payload, the objective function, is also required as input by all modules.
- Feasibility is enforced at each optimization iteration.

Modeling in MATLAB Hydrodynamics

 Curve fitting of experimental local hydrodynamics properties from Lewis theory to allow for a continuous design space exploration.

Image by MIT OpenCourseWare.

 Seakeeping analysis for coupled heave and pitch motions using 2D strip theory.

Assumption:

•Bretschneider spectrum with significant wave height of 2.5m and peak spectral frequency of 0.7rad/sec

Modeling in MATLAB Hydrostatics

 Determines the vertical metacentric height which is evaluated against American Bureau of Shipping (ABS) rules.

Image by MIT OpenCourseWare.

Assumption:

•Vertical position of payload's center of gravity at 1.2*D

Modeling in MATLAB Structural Mechanics

 Uses ABS parametric equations to determine maximum keel and deck stresses in sagging and hogging wave conditions.

Assumptions:

•Uniform longitudinal weight distribution.

Image by MIT OpenCourseWare.

NT

99' 9"

Simulation and Benchmarking

NT

NT

60 45 Source: McDonough Marine Service

Initial Design Space Exploration

- •4 Design variables
- •3 Level (lower bound, mid, higher bound)
- •JMP Statistical Software
- •Generate DOE to capture main effect and two-way interactions
- •48 runs (16 were unfeasible)

1

Initial Design Space Exploration

Analysis of 32 feasible designs:

Paramet	Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob>[t]	
Intercept	-25816.74	1781.269	-14.49	<.0001	
L	220.82255	11.14172	19.82	<.0001	
В	444.69651	34.35048	12.95	<.0001	
D	218.94769	126.6491	1.73	0.0953	
t	-50.15281	39.0948	-1.28	0.2104	

Recommended starting point for numerical optimization:

$$x = \begin{bmatrix} 140 \\ 35 \\ 9 \\ 20 \end{bmatrix}$$

Gradient-Based Optimization

SQP-MATLAB's "fmincon": Ability to handle multiple variables Ability to handle design variables' bounds

Results: P=23,530tons:

$$x^* = \begin{bmatrix} 137.8 \\ 34.2 \\ 8.7 \\ 14.2 \end{bmatrix} \quad \text{vs.} \quad x = \begin{bmatrix} 140 \\ 35 \\ 9 \\ 20 \end{bmatrix}$$

Sensitivity Analysis

Post-Optimality Analysis

Hessian diagonal entries close to O(1)
No improvement was achieved by trying to scale the design variables

Heuristic Optimization

Genetic Algorithm:

- •Easy implementation of fitness function
- •Close to the optimum

Results: P=22,468tons at
$$x = \begin{bmatrix} 138.7 \\ 34.6 \\ 8.9 \\ 25.1 \end{bmatrix}$$
 vs. $x^* = \begin{bmatrix} 137.8 \\ 34.2 \\ 8.7 \\ 14.2 \end{bmatrix}$

ESD.77

Global Optimum

Leveraging: •DOE •Gradient-based optimization •GA

Maximum Payload of P=23,530tons at
$$x^* = \begin{bmatrix} 137.8 \\ 34.2 \\ 8.7 \\ 14.2 \end{bmatrix}$$

Multi-Objective Optimization

Trade-off analysis at optimal payload solution:

For an extra ton of payload we need to add 244kg of structural weight

Conclusions

Model fidelity can be improved:

- Cross-section, scantlings, non-uniform plate thickness
- Consider most appropriate sea spectrum
- Evaluate all 6 degree of freedom motions and most importantly roll.

But will make optimization more challenging.

Back-up

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.