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Presentation Plan

• Background, roots, and history

• MDO as a way to make design task manageable

• System sensitivity

• Organization of Information

• Decomposition: Bi-Level Integrated System Synthesis (BLISS)

• MDO Assessment

• Can do now well

• Capabilities deficient, as yet

• Avenues of development
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In Vehicle Everything Couples to Structure

Aerodynamics

Propulsion

Controls

Hydraulics

Avionics

Electrical

system
Fuel

system

Landing gear

• Structural optimization

is at MDO roots

AIRFRAME

STRUCTURE
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Hypersonic Aircraft: Example of Coupling in Extreme

• What If: fuselage skin thickness is increased;

how will the flight range change?

• Answer engages at least four disciplines:

Aerodynamics, Structures, Control, Performance

Everything Affects 

Everything 

Else

t



5



6

MDO Roots

Structural Analysis:

• Assembled structure

• Components, e.g., local 

buckling

• Substructuring

• Experimentally validated

Operations Research:

• Concepts of: Design space & Design 

Variable; Objective Function; Constraints

• Math apparatus for optimization as 

search of Constrained Design Space 

•Large-scale applications in economics

Structural Optimization
Sensitivity Analysis: Disciplinary and Modular System; Post-Optimum Analysis; 

Decoupling Search from Analysis via Approximations  (Surrogate Models)

Other disciplines:
• Control

• Aerodynamics

• Propulsion

• etc.

Multidisciplinary Design 

Optimization

Massively Concurrent Computing

Cognition Science & Human Factors

L.A. Schmit

1960
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Disciplinary analysis output change due to input change:

Sensitivity Analysis of    F(Y,X) = 0

• Constant parameters P

• Design Variables X

• Increment ∆X

Discipline or subsystem

Y+ ∆Y = F(P,X+ ∆X))

• State (behavior) variables Y

• Increment ∆Y

• Efficient Finite Difference techniques with error control

• Quasi-analytical sensitivity  analysis based on Implicit Function Theorem

[∂F/∂Y ]{∂Y/∂Xj } = {∂F/∂Xj } extensible to higher order ∂/∂

• If the number of constraints g(X) is less than the number of design variables X,

then it is cheaper to obtain ∂g/∂Xj by Adjoint version of the above equations

• Automated Differentiation techniques

• Derivatives via Imaginary Numbers

What If?

Tools Available

• Search guided • Engineering judgment inspired

Set of linear equations
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• Example: TOGW has been minimized for a flight range R; 

sensitivity of TOGW to R? 

• Assume that an optimal solution X* has been obtained 

- the K-T conditions for optimality are satisfied.

• For some small change in problem parameter, we require 

that K-T conditions remain valid - differentiating these 

conditions wrt p (where p = R) one obtains

Sensitivity of Optimum to Problem Parameters
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• abridged: d f / d p = f / p + { λ }’ { gc } / p; Caveat: { gc } must not change 

in the neighborhood of the point where d f / d p is evaluated.
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Optimization Migrating from Structures to Other 

Disciplines

• Aerodynamics, Thermodynamics, Electromagnetic radiation, and more

• It became fundamental enabler in Composite materials

• It has always been the workhorse in space probe trajectory design

• Variety of techniques for decomposition of large problems into more 
manageable smaller ones have been developed

• Search and Analysis decoupled via Approximations (Surrogate 
Models)

Search (optimizer)

Analysis of

Full Model

Search (optimizer)

Analysis of 

Surrogate

Creation of

Surrogate Model

Design of

Experiments

(DOE)

Surrogate 

Model

Current practice in optimization applied to 

models expensive to analyze.

When model is

inexpensive to

analyze

Analysis of 

Full Model

Process Control

$$$ $/100

Loop 100K times

Loop <50 times

X Y
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Sequential Design Process

Example: Aircraft 

Aerody-

namics

Structu-

res

Cont-

rol
Configu-

ration

Aero-

elasticity
Manufac-

turing

intra-disciplinary optimization is routine

interdisciplinary feedbacks and optimizations are

discouraged by cost and time required to reopen

decisions already made.

• MDO in Concurrent Engineering approach strives

to make optimization and feedback routine, 

both intra- and inter-disciplinary. 
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Optimization in Design Process

Need

or

Oppor-

tunity

Concept
Preliminary

Design
Detailed

Design

Proto-

type Production

Feedback and agility

Qualitative
Quantitative

MDO firm foothold  

• Optimization most useful where quantitative content is high

research extension trend
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Optimization in Design Process

Need

or

Oppor-

tunity

Concept
Preliminary

Design
Detailed

Design

Proto-

type Production

Optimizer

Subroutines for

Simplified

Disciplinary

Analyses

MDO Methodology

Optimizer(s):

• Discipline 

& 

Component

• System

• System 

Analysis

•Discipline

&

Component

Analysis 

Modules

• Approximations
• Single person or

small team.

• Optimizer calls

on a single code

invoking disciplinary

subroutines.

• Depth of detail explodes volume

of information and team size.

• Decomposition becomes necessity

• Concurrent operations, dispersal

Time into project
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100

0

% 
Knowledge

Design 

freedom

Time into design process

• PARADOX: 

As the design process advances,

the knowledge increases but the freedom

to act on that knowledge decreases. 

AXIOM: 

If design A is one based on full knowledge,

and B is based on less than full knowledge,

then B is inferior to A.

MDO REMEDY:

Accelerate generation of knowledge

&

Retain more of design freedom longer

Sequential Design Process Paradox and MDO Remedy
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Conceptual              Preliminary              Detailed

Agility of feedback

Design Process  needs Agility and Capability 

to Handle Huge Volumes of Variables

• Agility:  ability to act on new information 

uncovered downstream, even if it requires 

revisions at conceptual level

• MDO & Multiprocessor

computing meets the 

challenge of agility
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Boeing’s Design Explorer Tool Suite Used to 

Perform Hypersonic Aircraft Configuration 

Optimization Using Approximations

Develop Parametric 

Geometry Model & Select 

Optimization Parameters

Construct Design of 

Experiments – Defines 

Vehicle Set for Analysis

Perform 

Multidisciplinary Design 

Analysis of Vehicle Set

Create Response Surface Model 

of MDA Output (Kriging Model)

Expensive 
Analysis

Expensive 
Analysis

Expensive 
Analysis

Expensive 
Analysis

Expensive 
Analysis

Expensive 
Analysis

Expensive 
Analysis

Expensive 
Analysis

Analyze Model Quality 

(Analysis of Variance)

Run Optimizer

Refine OptimizationAdd Configuration 

Design Details

Optimization Problem
• Find vehicle 2nd-stage shape parameter values that minimize TOGW

• Constraints: fixed payload, achieve orbit, maintain adequate thermal protection



16

TOGW Empty Wt. Propellant Fraction

Baseline

Optimized

Ave. Unit Wt. (Volume^2/3)/Swet

Baseline

Optimized

Baseline

Optimized

39%

32%

42%

16%

23%

Dramatic Benefits and Tradeoffs Apparent 

in MDO Results



17

•MDO as a way to make design task manageable

• System sensitivity

• Organization of Information

• Decomposition: Bi-Level Integrated System Synthesis (BLISS)
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Design Problems in which Disciplines Interact

• This system is not hierarchial

• All disciplines equally important

Aero

Structures

Controls

Loads

Deformations

Bending stresses at

Wing root

Pressure

distribution

Control surface

deflections

• Aircraft wing as example of an engineering system: “An entity of subsystems

and physical phenomena, all interacting with each other, whose design

engages many disciplines and specialties”.

EVERYTHING INFLUENCES EVERYTHING ELSE
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Coupled System Sensitivity - 1

• Consider a multidisciplinary system 

with two subsystems A and B

– system equations can be written in 

symbolic form as

– rewrite these as follows A

B

AX

BX

BY

BY

AY

AY

0]),,[(

0]),,[(

BAB

ABA

YYXB

YYXA

),(

),(

ABBB

BAAA

YXYY

YXYY
these governing equations

define 

as implicit functions. 

Implicit Function Theorem applies.
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Coupled System Sensitivity - 2

• These equations can be represented in matrix notation as

• Total derivatives can be computed if partial sensitivities computed in each 
subsystem are known - the latter can be computed locally within the 
subsystems

B

B

B

B

B

A

A

B

B

A

A

A

A

B

A

A

A

B

B

A

X

Y

dX

dY

dX

dY

I
Y

Y

Y

Y
I

X

Y

dX

dY

dX

dY

I
Y

Y

Y

Y
I

0

0

same 

matrix

different

Right Hand Sides

• Factor matrix once, F-B Substitute multiple RHS, one per Xi

Linear, algebraic equations with multiple RHS
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As Problems Become Large Data Handling Becomes Very Important

Aero
Model

Struct.
Model

Press. &
Deflect

Struct.
Weight

Struct.
Mode

Flex.
Aero

Character

Rigid
Aero

Character

Final
Data

Stability
Qualities

Dynamic
Model

Stability
& Modal
Character

Initial
Data

Revised
Data

Aero
Analysis

Struct.
Analysis

Weight & 
Inertia
Analysis

Aero
Elastic
Analysis

Aero
Elastic
Character

Control
Analysis

Vehicle
Perform.

Mission
Perform.

Geometry

Example: Aircraft Design Process



22Time - 21,340 Cost - 19,640

Aircraft Computational Operations and Data as N-square 
Diagram (a.k.a. Design Dependency Matrix, DDM)

Process Time Cost
DYNMODL     30      30
STDMOCH     40      20
STRMODL     10      50
HANDQUL     10      50
STRMODE     10      50
GEOMDEV     50     10
AROSRVO     40     20
STRDYNA      50     10
CSVSANL      20      40
FAEROCH      20     40
INITDAT         40      20
RVSEDAT      30      30
MISPERF       30      30
VEHPERF      20      40
RAEROCH     30      30
AEROANL     20      40
PRESDEF      30      30
STRANAL      40      20
STRCTWT      50      10
WIANAL         40      20
AEROMDL     20      40
FINLDAT        20      40

Feed Forward

Feed Back

Execution:

Space Shuttle Orbiter
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Reduced Design Cycle Time and Cost by Permuting
DDM Rows & Columns: Space Shuttle Application

Time from 21,340 to 3,800         Cost from 19,640 to 3,220

Process  Time Cost
RVSEDAT       30       30
INITDAT          40       20
GEOMDEV      50      10
STRMODL      10       50
AEROMDL      20       40
AEROANL      20       40
PRESDEF       30       30
STRANAL       40       20
STRCTWT       50      10
WIANAL          40       20
STRMODE      10       50
RAEROCH      30       30
FAEROCH       20      40
STRDYNA        50      10
STDMOCH       40      20
DYNMODL       30       30
CSVSANL        20       40
HANDQUL       10       50
AROSRVO       40       20
VEHPERF        20       40
MISPERF         30       30
FINLDAT          20      40

• Number of

FeedBacks radically

reduced

• Iterative loops caused

by FeedBacks remaining

clearly identified

• Single nested iterative loop

• Execution time and cost reduced:
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Realities of Engineering Team Work Must Be 

Respected

• Engineers form groups aligned with project components: disciplines, parts, and processes

• Groups have authority to decide within their domains, not only to analyze

• Groups own their methods and tools 

• Engineers exercise judgment, individual and collective using ALL available information

• Groups control their work schedules within team deadlines

• Groups may be geographically dispersed

• Groups collaborate toward the system objectives.

• Concurrent operations compress the project elapsed time

Any MDO method to support an Engineering Team must comply

with all of the above
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Massively Concurrent Computing (MCC)

• Many processors in one box

• Multitude of single processor computers clustered (e.g., 10,000 cluster 

of Apple G5 at Virginia Tech)

• Multitude  of processors in one installation (> 100,000 available now at 

Livermore Lab (IBM), 1 million expected soon)

• Field-programmable Gate Array computers – reconfigurable to N 

processors.

• Variety of processor-local memory – shared memory – mass storage

offer diverse computer architectures.

Continent-spanning 

networks support MCC

• Potential for 106  to 107 reduction of elapsed time

for complex math model analysis = new avenues for MDO

• Coarse-grained parallelism now using legacy codes,

next: new codes re-written from scratch.

• New metric of merit for numerical methods: Ability to engage large number of 

concurrently operating processors for compression of the task elapsed time.
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Commercial Toolboxes Emerged

• Popular packages bring optimization to millions of users

– EXCEL, MATLAB Optimization ToolBox, Mathematica

• Vendors offer integration and optimization tools to engineering 

corporations

– Altair

– Engineous

– Vanderplaats R & D: Genesis/DOT

– Boeing: Design Explorer

– Integrated Concurrent Engineering ICE

– Application at MIT to be visited later

– Phoenix: ModelCenter/CenterLink/Bi-Level Integrated System 

Synthesis (BLISS)

– Next charts introduce BLISS inner workings
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Group

A

MDO challenge: How to break out of the Sequential Design Paradigm

to achieve concurrency and specialist autonomy

Group

B

• Groups A & B need input data from each other

Hence, “natural” process is sequentially iterative:

• “A” guesses on input from “B”

• “A” executes; passes output to “B”

• “B” executes; passes feedback output to “A”

• “A” re-executes to accommodate new data from “B”

• ….continue until converged

Group

A

Group

B

Assumed input ranges

Solution search

Surrogate models

•Availability of massively concurrent computing

technology enables new organization of the 

above process

Very simple concept:

• “A” assumes range of input from “B”, “B” ditto from “A”

• “A” and “B” work concurrently to generate their outputs

• each does this in the space of its input at DOE-generated points

• each fits a surrogate model (Response Surface, kriging, Neural Net)

to represent its output = f(input)

• Search algorithm (optimizer) uses surrogate models to find A & B solution

•Result: sequentially iterative process converted to concurrently iterative

• Bulk of computing effort accomplished simultaneously; elapsed time compressed

• Groups remain autonomous in their modes of operandi and choice of tools
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System Optimization Dilemma

• If they are to optimize concurrently and to remain coupled by data 
exchange, then

A basic question arises: 

What objectives should each group optimize for?

Bi-Level Integrated System Synthesis, BLISS, is one answer 

– following charts

• Several MDO methods offer answer to the above question –

see Supplemental Reading at the end.
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Example: Wing as System of Two Subsystems:

Structures & Aerodynamics

Wing - structure Wing -aerodynamics

P P
Loads

Displacements

a a

Range: R = (c/Drag) LOG [( Wo + Ws + Wf)/ (Wo + Ws )]

• Range is the system objective

• Each of two subsystems affects

R directly and indirectly Loads & Displacements

must be consistent

• What to optimize the structure for? Lightness? Displacements = 1/Stiffness?

An optimal mix of the two?

Eg.: Structures: Directly by w, Indirectly by Displacement  Drag
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Trade-off between opposing objectives

of lightness and stiffness

Wing cover sheet thickness

Weight

Displacement ~ 1/Stiffness

Thickness

limited by

stress

Lightness             Stiffness

•What to optimize for?

•BLISS Answer:  minimum of        f = cs1 Weight + cs2 Displacement
• the weighting coefficients   cs1, cs2  are, as yet, unknown.
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Response Surface as Approximation of Structure Optimized locally

Displacement

Weight

a

Cs

RS GIVEN: geometry “a”, load P,

and   “cs” 

FIND: cross-sectional gages

MINIMIZE:

f = cs1 Weight + cs2 Displacement

SATISFY: local constraints,

e.g., stress < allowed

• Do the above optimization (any technique) at 

many points in space (a, P, cs); use DOE

to disperse the points. 

• Fit RS(weight) & RS(displacements)

• Save the RS for the system optimization

P
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Response Surface as Approximation of Aerodynamics Optimized locally

Drag

Load P

a

Ca

RS
GIVEN: geometry “a”, 

displacements, and   “ca” 

FIND: airfoil leading edge radius

MINIMIZE:

f = ca1 Load + ca2 Drag

SATISFY: local constraints,

load = lift required

• Do the above optimization (any technique) at many

points in space (a, P, ca); use DOE

to disperse the points.

• Fit RS(Load) & RS(Drag)

• Save the RS for the system optimization

displacements
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Drag

Load P

a

ca

RS

Displac.

Displac.

Weight

a

cs

RS

P

GIVEN:

RS-

Structures
GIVEN:

RS-

Aerodynamics

FIND: geometry “a”, P, Displacements, ca, cs

MAXIMIZE: R = (c/Drag) LOG [( Wo + Ws + Wf)/ (Wo + Ws )]

SATISFY: P(a, Displac.) = Displac.(a, P)

System 

optimizer 

does this 

Fast read-out

from RS

System-level Optimization

• This is the essence of Bi-Level Integrated System Synthesis, BLISS
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MDO Huge Computational Problem Solved by 

Decomposition, RS & Massively Concurrent Computing

Optimization of subsystem

or discipline

Analysis of subsystem

or discipline 

Optimization of subsystem

or discipline

System

optimization

X1
X2

F(X)

X1
X2

F(X)

X1

X2

F(X)

RS

RS

Precomputed off-line

MC

cloud

• Simple concept at the price of a lot computing

• Taking advantage of computing getting cheaper, while                          

labor getting dearer



Start

BB1 DOE

BB1 optimization

System optimization

Update variables

Optimum design

Yes

BB2 DOE

BB2 optimization

BB3 DOE

BB3 optimization

Converged? Update variable bounds

No

BB1 RSM BB2 RSM BB3 RSM

Step 1

Step 2

Step 3

Adjust RS

One

cycle



x
X1

X2

F(X,Y)

Adjustments to Response Surface Surrogate Model

Add DOE points over a patch

beyond the boundary

Add DOE points 

over an interior patch

System Optimization ends at a point

within RS boundary: add DOE points

around the point

System Optimization 

ends at a point near 

RS boundary: 

add DOE points

beyond the 

boundary to stretch

RS

RS
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•MDO Assessment

• Can do now well

• Capabilities deficient, as yet

• Avenues of development
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Bi-Level Integrated System Synthesis (BLISS):

• Decomposition to simulate human organization

• Supersonic Business Jet Test case

• Disciplines interacting:

Objective: Max Range

• Award:
Society of Automotive 

Engineers (SAE) Wright

Brothers Medal for 1999

@ World Aviation Congress

2000.

- Aerodynamics
- Performance

- Structures
- Propulsion

• BLISS was commercialized in 2005 in ModelCenter/CenterLink
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Fly-back

booster

2nd stage separates and continues

to destination

Recent BLISS Application: Two-stage Orbital Transport

0

90000

180000

270000

360000

450000

500000

630000

720000

810000

900000

LB

x

UB

• Result sample: System Weight (lb)

Variance over BLISS iterations.

• Initial design was infeasible

RS True

cycles
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ABL System Design - collaboration with Lockheed -

another example of using decomposition and MCC

BMC4I  
• Boeing

Beam Control System
• Turret Assembly

•Large Optics

•Four Axis gimbals

•Transfer optics 

• Beam Transfer Assembly

•Sensor Suite

•Active Mirrors

•Illuminators

•Electronics

•Software/Processors

747F Aircraft -

• Boeing
• CDR 29 Feb - 3 Mar

Chemical Oxygen Iodine

Laser (COIL) 

• TRW

• 21-23 March

System Level Design
• Boeing

• CDR 25-27 April

12

• AirBorne Laser – MDO method and multiprocessor computing were

applied in this Lockheed project, a part of the national Strategic Defense Initiative

• Initially, the aim error exceeded specification

•MDO reduced aim error by 37 % 

at 2 % weight penalty and met specification
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High Speed Civil Transport Optimization
With ADJIFOR*-Generated CFL3D Adjoint

Computational Fluid Dynamics Code

• BETTER
– Numerical accuracy
– Design freedom
– Design results
~ 5% cruise drag reduction,                  

401 design variables**
• CHEAPER

– Less human resources
– Less computer resources
~ 10 times cheaper than

reference design cycle**

• FASTER
– Development time
– Design cycle execution time

~ 25 times faster than comparable  
nonlinear design practice**

*   Developed by Rice University

** Initial Boeing Long Beach wing-body result
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MDO at Conceptual Design Stage

Subsystem 1

Subsystem 2

Subsystem 3

Subsystem N

ICEMaker 

Server

Judgment

+

MOGA

Mission 

Requirements

Derived from customer needs

or mission objectives

Centralized data 

storage

and session 

management

MOGA

results 

provide

feedback for 

future trades

MOGA

• Collective and individual

judgment retained as in 

ICE-only approach

• The difference:

Judgment amplified by

the use of large volume

of MOGA-generated,

feasible designs, 

subsystem couplings

accounted for.

• Integrated Concurrent Engineering ICE implemented in 

ICEMaker: An Excel-Based Environment for Collaborative Design

• Multi-Objective Genetic Algorithm - MOGA
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Comparison

• Each control group Pareto point is dominated by some Optimization group Pareto point

• No Optimization group Pareto point is dominated by a control group point

• The Optimization trendline for the combined groups is always closer to the utopia point than the control trendline

• Distance between trendlines measures MDO advantage

Design Session Results

y = 5E+06x + 6E+07

R
2
 = 0.9161

y = 4E+06x + 2E+07

R
2
 = 0.9293

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

3.5E+08

0 10 20 30 40 50 60 70

Payload mass (metric tons)

C
o

s
t 

($
)

Control Groups

Optimization Groups

Baseline

Utopia Point

• Test at MIT: Launch vehicle design project done simultaneously by ICE groups  and

ICE – GA augmented groups 
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What MDO is not good at (yet) - 1

• Discontinuities in math models

• Example: response with

resonance divides

design space into disjoint

subspaces.

• CAVEAT: Approximate Math Models tend to hide discontinuities
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What MDO is not good at (yet) - 2

• Optimization in presence of uncertainty
• Constant parameters P + δP

• Design Variables X+ δX

• Increment ∆X+ δ(∆X)

Discipline or subsystem

Y+ ∆Y = F(P,X+ ∆X))

• State (behavior) variables Y+ δY

• Increment ∆Y+ δ (∆Y)

δ

• First order effect of  δ uncertainty is the optimization result  obtained

as a (mean + distribution) 

• Second order effect may be redirecting search path to qualitatively 

different optimum

• Even more difficult case arises when it is not clear what F(P, X) is

• This is primarily a modeling issue at focus of current research
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What MDO is not good at (yet) - 3

• Discrete major design variables

Optimize OptimizeCompare

• In contrast to quasi-discrete variables such as sheet metal thickness 

optimized as continuous variable and rounded up to the nearest  

commercial sheet metal gage available 

X – number

of Engines

Choose
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and

Life-Cycle Considerations

• Stringent emissions and noise limits

• Clean disposability & recycling

What MDO is not good at (yet) - 4

• Supporting design for entire Life Cycle

• Eliminate barriers separating Life Cycle elements in design process

• Develop math models for elements of Life Cycle sharing design variables

• This is primarily a modeling and data exchange issue

• Requirements to include ever more stringent environmental constraints,

e.g., noise, emissions, etc.
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Optimization Across Conventional Barriers: Potentially

Very Important Advancement

Vehicle design Fabrication
data

• Focus on vehicle physics

and variables directly

related to it

• E.g, range;

wing aspect ratio

• Focus on manufacturing

process and its variables

• E.g., cost;

riveting head time

“over the wall”
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Two Loosely Connected Optimizations

•Seek design variables

to maximize performance

under constraints of:

Physics

Cost

Manufacturing difficulty 

• Seek process variables

to reduce the fabrication cost.

The return on investment (ROI) is a unifying factor

ROI = f(Performance, Cost of Fabrication)
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Integrated Optimization

ROI = f(Range, Cost of Fabrication)

• Required: Sensitivity analysis on both sides

∂Range/ ∂(AspectRatio) ∂Cost/ ∂(Rivet head time)

∂(Rivet head time)/ ∂(Aspect Ratio)

∂ROI/ ∂Aspect Ratio = ( ∂ROI/ ∂Cost) ((∂Cost/ ∂(Rivet h.t.)) 

(∂(Rivet h.t)/ ∂(Aspect Ratio)) + (∂ROI/∂Range) (∂Range/∂(Aspect Ratio))
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Integrated Optimization Design < --- > Fabrication

• Given the derivatives on both sides

Design Fabrication

• Unified optimization may be constructed to seek

vehicle design variable, e.g., AspectRatio, for 

maximum ROI incorporating AR effect on Range and on

fabrication cost.

AR

ROI

Range

Cost

ROI

Range; Cost

Opt.
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Start      

Get

Get

Get

• Optimization Cannot Get 

Something that Was Not Seeded.

• In contrast, people can.

• If design space could be 

extended and redefined, 

MDO would advance from 

design-aid status to automated designer

• Prerequisite: understanding of the human mind and brain

What MDO is powerless to do

NO !

YES
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MDO Role in Product Life-Cycle

Recognition of

Need Opportunity

Conception

Design: 

Conceptual

Preliminary

Detailed

Production

Test

Marketing

MDO role

blue – qualitative,

red - quantitative

• MDO excels as a 

quantitative tool that

aids human judgment
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MDO Capability Growth Trends

Horizontal growth: “More of the Same”

• More disciplines integrated

• Growth of dimensionality: more variables, constraints, objectives

• Incorporation of life cycle considerations, including uncertainties

• Solving problems with discontinuities

• Faster answers due to MCC

• Family of products, e.g., Airbus 3xx line,

optimized for life cycle return on investment,

to capitalize on common elements and processes

• System-of-systems, e.g., support of human exploration

of Planet Mars, or 

National Highway-Rail-Air transportation system, or

Tri-level optimization of a vehicle, e.g., 

composite skin – airframe – aircraft                 

V
e
rt

ic
a
l 
G

ro
w

th
: 

“T
re

a
d
 N

e
w

 G
ro

u
n
d
s
”
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Summary and Conclusions

• Multidisciplinary Design Optimization (MDO) has evolved as a research 
and development field engaging:

- Engineering Physics      - Numerical Methods   - Modeling & Simulation

- Operations Research     - Computer Science    - Management Science

- Human Factors              - CAD

• MDO offers mature capability in disciplines and their integration in 
projects

• Recent advances made MDO ready to aid in large undertakings at 
major product level involving large company and its partnerships

• Areas exist where MDO is inadequate qualitatively and quantitatively,  
these areas identify priority development trends

• MDO is poised  to impact design of product families and system-of-
systems

• Multiprocessor computing and MDO are synergistically intertwined 
toward rapid growth of MDO capability

• Advancement of MDO from designer’s aid to automated designer is a 
“over the horizon” proposition, predicated on success of research into 
human mind and brain

Recommended Supplemental 

Reading: next chart
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Supplemental Reading

TEXTS:

•Rao, Singiresu S.: “Engineering Optimization, Theory and Practice” 

John Wiley & Sons, 1996

•Haftka, Rafael. T..; Gurdal, Zafer : “Elements of Structural Optimization”, 

Kluwer Acad. Publ. 1991

•SURVEYS

•Sobieszczanski-Sobieski, J.: and Haftka, R.T.: Multidisciplinary Aerospace Optimization: Survey of Recent Developments; AIAA-96-0711, 

Structural and Multidisciplinary Optimization J., Vol.14, No.1, August 1997

•Balling, R.J.; and Sobieszczanski-Sobieski, J.: Optimization of Coupled Systems: A Critical Overview of Approaches; AIAA J. Vol. 34, No. 1, pp. 6-17; 1996.

•ARTICLES

•Sobieszczanski-Sobieski, J. , Barthelemy, J.-F. M. , and Riley, K. M.: Sensitivity of Optimum Solutions to Problem Parameters. AIAA Journal, Vol. 20, No. 9, 

Sept.1982, pp 1291-1299.

•Sobieszczanski-Sobieski, Jaroslaw: On the Sensitivity of Complex, Internally Coupled Systems. AIAA Paper 88-2378, NASA TM 100537 and

•AIAA Journal, vol. 28, No. 1, Jan. 1990, pp. 153-160.

•"Everything Influences Everything Else: How Math Can Help to Resolve Designer's Dilemma" by Jaroslaw Sobieszczanski-Sobieski, NASA Langley Research Center

and Jan Tulinius, Rockwell International; AA Magazine, May 1991

•Multidisciplinary Design Optimization: An Emerging New Engineering Discipline by Jaroslaw Sobieszczanski-Sobieski NASA Langley Research Center Hampton, 

Virginia,  First World Congress on Structural Optimization, Rio de Janeiro, July 1993, ed. J. Herskovits; Proceedings of; Kluwer Acad. Publ. pp.483-496, 1995

•Sobieszczanski-Sobieski, J.; Altus, T., Phillips, M.; and Sandusky, R., Jr.: “Bi-Level Integrated System Synthesis for Concurrent and Distributed Processing (BLISS 2000)”; 

AIAA-2002-5409; 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Sept. 4-6, 2002, Atlanta, Georgia 

and AIAA Journal, Vol. 41, No. 10, Oct. 2003, pp. 1996-2003.

•Jaroslaw Sobieski and Olaf Storaasli: "Computing at the speed of Thought" Feature article in Aerospace America, Oct. 2004, pp.35-38.

•Sobieszczanski-Sobieski J., Venter G.: "Imparting desired attributes in structural design by means of multi-objective optimization"; AIAA 2003-1546; 

and Structural and Multidisciplinary Optimization, Vol. 29; No. 6; June 2005, pp. 432-444

•Brian Bairstow; Olivier DeWeck, and Jaroslaw Sobieszczanski-Sobieski “Analysis of Integration of System-Level Optimization in Concurrent Engineering” 

48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 23-26, Honolulu, Hawaii.AIAA 2007-1879

•de Weck, O.; Agte, J.; Sobieszczanski-Sobieski,, J.; Arendsen, P; Morris, A.; and Spieck, M.: “State- of- the- Art and Future Trends in Multidisciplinary Design Optimization”; 

•AIAA-2007-1905; 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; April 23-26, 2007, Honolulu, HI
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The End
Thank you

Q & A
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Spares 
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Power Line Cable

tout cable

slack cable
h

h

Length(h)

A(h)

Volume(h)

• Given:

• Ice load

• self-weight small

• h/span small

A

L

V

min

tout slack
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Wing Thin-Walled Box

Lift

•Top cover panels

are compressed

b

thickness t

•Buckling stress

= f(t/b)2

b few

ribs

many

ribs 

Cover weight

Rib total weight

Wing box weight

min
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Multistage 

Rocket

Saturn V

fu
e
l

drop when

burned

number

of segments
fuel weight

segment

junctions

weight

rocket weight

2 3

min

• More segments (stages) = less

weight to carry up = less fuel

• More segments = more junctions =

more weight to carry up

• Typical optimum: 2 to 4.
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Under-wing Nacelle 

Placement

shock wave

drag

nacelle

wing

underside

• Inlet ahead of wing max. depth =

shock wave impinges on forward

slope = drag

• Nacelle moved aft = landing gear

moves with it = larger tail (or 

longer body to rotate for take-off =

more weight nacellefore aft

drag

weight
Range

max
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National Taxation

revenue collected

incentive to work

tax paid on $ earned

average

tax rate

0 % 100 %

max
Revenue

collected
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National Taxation

Increase taxes? Cut taxes?

revenue collected

incentive to work

tax paid on $ earned

average

tax rate

0 % 100 %

max

If we are left of max, 

increase taxes

If we are right of max,

reduce taxes
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Nothing to Optimize

P Newton

A cm2

N/cm2

A

• Monotonic trend

• No counter-trend

• Nothing to optimize

allowable

Rod

Mass

kg Mass
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How to recognize that

the problem at hand needs optimization.

• General Rule of the Thumb: 

there must be at least two opposing trends 

as functions of a design variable

x

Analysis

x

f1 f2

f1

f2

f1

f2
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Various types of design optima
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Design Definition: Sharp vs. Shallow

X

X

X

constraints - 0 contours

1

2

constraints - 0 contours

1
2

Objective

Constraint

- bad side of

• Near-orthogonal intersection

defines a design point

• Tangential definition identifies 

a band of of designs

band
point

descent
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D
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A5

B3

B4

C1
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C5
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D4

OPT

A1

a)

b)

c)

B3

Figure 1 BLISS supporting a project matrix organization

Letters = disciplines

Numbers = physical 

subsystems



#101

#102

#103

#104

Yaeroloads

Ywf

Ywf

Ywing deform.

#101

#102

#103

#104

Y*wf

Y*wf

Y^wing deform.

OPT

Y*aeroloads, Xsh*geom., Y*wf

Y*aeroloads,

Xsh*geom

Xsh*geom

Xsh*geom
Y*aeroloads

Y*aeroloads

Y*wing deform

Y^aeroloads

Xsh*geom

Fig. 2
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Themes

1 Title

2 Hist

3-5 Review of Syllabus

6-7 Migration to other disc. and MDO

8-12 Design Process attributes

13-24 Design Process requires infrastructure capable of:

13 Agility and Huge Volumes of Variables

14 Solution to the above: Approximations, Decoupling Analysis from Opt.

15-16 Application example: Boeing Hypersonic

17-18 Everything affects…

19-20 GSE as solution for the above based on discipl. Sensit. - syllabus.

21  Data handling

22-23 Nsq Diag- sol. For the above

24 Human factors

26 Help from MCC

27 Commercial tools

27-40 Two Implementations of MDO based on all of the above

27-28 ICE

29 breaking the sequentiality

30 dilemma resulting from the above 

31-40 BLISS

41-45 What is not good - needs to be done

46-48 Closure
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Drag

Load P

a

ca

RS

Displac.

Displac.

Weight

a

cs

RS

P

GIVEN:

RS-

Structures
GIVEN:

RS-

Aerodynamics

FIND: geometry “a”, P, D., c1, c2

MAXIMIZE: R = RS(a,D.,P.,cs,ca)

SATISFY: P(a, Displac.) = Displac.(a, P)

System 

optimizer 

does this 

Fast     read-out

from      

RS

System-level Optimization, the objective from RS

Range

Weight

RS

Drag
GIVEN:

RS-

Performance

Range
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FIND: geometry “a”, P, D., c1, c2

MAXIMIZE: R = RS(a,D.,P.,cs,ca)

SATISFY: P(a, Displac.) = Displac.(a, P)

System 

optimizer 

does this 

System-level Optimization
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Drag

Load P

a

ca

RS

Displac.

Displac.

Weight

a

cs

RS

P

GIVEN:

RS-

Structures
GIVEN:

RS-

Aerodynamics

System-level Optimization

Range

Weight

RS

Drag
GIVEN:

RS-

Performance

Range
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Drag

Load P

a

ca

RS

Displac.

Displac.

Weight

a

cs

RS

P

GIVEN:

RS-

Structures
GIVEN:

RS-

Aerodynamics

FIND: geometry “a”, P, D., c1, c2

MAXIMIZE: R = RS(a,D.,P.,cs,ca)

SATISFY: P(a, Displac.) = Displac.(a, P)

System 

optimizer 

does this 

Fast     read-out

from      

RS

System-level Optimization

Range

Weight

RS

Drag
GIVEN:

RS-

Performance

Range



76

BLISS Formulation Contrasted with All-in-One Formulation

•Original problem, All-in-One Find Design Variables V

Minimize F(V)

Satisfy     g(V) <= 0

• BLISS: Decomposed into two levels: V = { Xshared | Xlocal}

• Discipline or subsystem level   Given Xshared & Y coupling var.

Find Local Design Variables Xloc

Minimize f(Xsh, Y, Xloc)

Satisfy     g(Xsh, Y, Xloc) <= 0

• System level: Given Optimum found in each module 

Find Xshared

Minimize F(Xshared)

Satisfy     coupling constraints on Y

Many of these    done simultaneouslyiterate
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Results:  Sensitivity Of Range to Variables

X-sect Throttle

t/c

h

M
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Cf
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B3

B4

C1
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D4
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a)
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c)

B3

Figure 1 BLISS supporting a project matrix organization

Letters = disciplines

Numbers = physical 

subsystems
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#102

#103

#104

Yaeroloads

Ywf

Ywf

Ywing deform.

#101

#102

#103

#104

Y*wf

Y*wf

Y^wing deform.

OPT

Y*aeroloads, Xsh*geom., Y*wf

Y*aeroloads,

Xsh*geom

Xsh*geom

Xsh*geom
Y*aeroloads

Y*aeroloads

Y*wing deform

Y^aeroloads

Xsh*geom

Fig. 2
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Optimization Migrating from Structures to Other 

Disciplines

• Aerodynamics, Thermodynamics, Electromagnetic radiation, and more

• It became fundamental enabler in Composite materials

• It has always been the workhorse in space probe trajectory design

• Variety of techniques for decomposition of large problems into more 
manageable smaller ones have been developed

• Search and Analysis decoupled via Approximations (Surrogate 
Models)

Search (optimizer)

Analysis of

Full Model

Search (optimizer)

Analysis of 

Surrogate

Creation of

Surrogate Model

Design of

Experiments

(DOE)

Surrogate 

Model

Current practice in optimization applied to 

models expensive to analyze.

When model is

inexpensive to

analyze

Analysis of 

Full Model

Process Control

$$$ $/100

Loop 100K times

Loop <50 times
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How to find optimal design despite curse of 

dimensionality

Analysis of

Discipline, Subsystem or System

Optimizer 

(search code) 

X

Y

• Curse of dimensionality: number of calls to analysis goes up exponentially with

the number of design variables in X; Not practical for large problems. 

Decouple Search from Analysis by use of Approximate Model
• Efficient search techniques

• Using approximate models (surrogates) to answer optimizer calls

• Approximation and Model Management in Optimization (AMMO)

• Exploiting massively concurrent processing

Analysis of

Discipline, Subsystem

or System

Optimizer 

(search code) 

X

Y

Approximate 

Model (surrogate)
$

$$$$$

• 10 to 50 times regardless of dim(X)

cents
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