16.888 Final Presentation

Airbag-Based Crew Impact Attenuation Systems for the Orion CEV

Anonymous MIT

Students

Background and Motivation

- Orion CEV performance has been continually downgraded over the past two years due to continuing mass constraints
- Exploring an alternative airbag-based landing attenuation system concept

Problem Formulation

Problem Definition:

Baseline Design Concept

Project Goals:

Optimize over a single airbag system to:
-Gain insight into the influence of the design variables on overall impact attenuation performance
-Develop a framework for future use with a multi-airbag model

Fixed Parameter	Value
Venting Area	Equiv. 2 x Ø2" area
Operating Medium (Y)	Air (1.4)
Impact Velocity	$7.62 \mathrm{~m} / \mathrm{s}$
Gravitational Acceleration	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Atmospheric Pressure	101.325 kPa
Loaded Mass	2.5 kg

Design Parameters	
-Radius	$[\mathrm{R}]$
-Length	$[\mathrm{L}]$
-Inflation Pressure	$\left[\mathrm{P}_{\text {bagl }}\right]$
- Valve Burst Pressure	
(measured as pressure	
in addition to inflation	
pressure) $\left[\Delta \mathrm{P}_{\text {burst }}\right]$	

Formulation

min. $\beta=$ Injury risk
s.t.
$0.1 \leq R \leq 0.5 \quad[\mathrm{~m}]$
$0.3 \leq L \leq 0.85 \quad[\mathrm{~m}]$
$P_{\text {bagl }} \geq 101325$
$\Delta P_{\text {burst }} \geq 0$

System Modeling

Low fidelity model used

-Based on preliminary design code for Mars Pathfinder airbag system (BAG)
-Approx. 3sec function evaluation time

Single Objective Optimization

Design of Experiments: Orthogonal Array

- Efficient and balanced
- Reduced number of experiments required

Factor	Level 1	Level 2	Level 3
Radius (m)	0.2	0.3	0.4
Length (m)	0.3	0.5	0.7
$\mathrm{P}_{\text {bagl }}(\mathrm{atm})$	1.0	1.1	1.2
$\Delta \mathrm{P}_{\text {burst }}(\mathrm{kPa})$	8	12	16

Starting Point

$$
\mathrm{R}=0.2 \mathrm{~m}, \mathrm{~L}=0.3 \mathrm{~m}, \mathrm{P}_{\text {bagl }}=1.1 \mathrm{~atm}, \Delta \mathrm{P}_{\text {burst }}=8 \mathrm{kPa}
$$

Sequential Quadratic Programming

- Gradient based method
- No analytical expression for gradient
- Availability of the program 'fmincon.m'

Simulated Annealing - Heuristic method - Noisy design space - Reasonable number of function evaluations				
DRI	R	L	Pbag	Pburst
2.890	0.122	0.311	101820	4088

Single Objective Optimization

Termination: Change in function value $<10^{-6}$

Simulated Annealing

Termination:

Number of consecutive temperatures at which the new configuration is not accepted ≥ 5

Solution Interrogation

- Why does the optimizer prefer smaller geometries?

- Smaller geometry
\rightarrow Higher pressure maintained over a longer period of time
\rightarrow Pressure relief valve open for a longer period of time
\rightarrow More gas (energy) vented from the system
\rightarrow Better impact attenuation
- Lower limit of geometry occurs just before bottoming-out occurs
- Accuracy of the prediction of this point is directly influenced by the airbag shape function

Solution Interrogation

- Why does the improved SA solution not hit the geometric lower bounds?

Coarse Resolution ($\Delta=0.025$)

Fine Resolution ($\Delta=1 \mathbf{1 0}^{-6}$)

- SQP stepped over the low amplitude high frequency noise
- The stochastic nature of SA allowed it to find better solutions "amongst the noise"
- Noise is an artifact of the calculation of the Brinkley Index
- Looping through time to obtain a Brinkley DRI time history and obtaining the maximum value from this
- Noise affects how the sensitivity analysis is performed
- Results are dependent on how much noise is captured by choice of step size

Sensitivity Analysis

- Performed on the solution obtained from SQP
- Explored only dJ/dx
- Did not explore dx/dp or dJ/dp
- Lower bounds are active
- Currently not confident in the physical correctness of these lower bound values
- Nondimensionalized sensitivities in objective with respect to design variables:

Sensitivity	Step Size	Value
$\mathrm{dJ} / \mathrm{dR}$	10^{-3}	0.9863
$\mathrm{dJ} / \mathrm{dL}$	10^{-3}	1.7877
$\mathrm{dJ} / \mathrm{dP}_{\text {bagi }}$	10^{-3}	1.2892
$\mathrm{dJ} / \mathrm{dP}_{\text {burst }}$	10^{-3}	0

Multi-Objective Optimization

Objectives:

- Minimize Brinkley Index
- Minimize system mass (Airbag + Gas)

Method:

- Full factorial expansion over design space
- Originally tried MOGA
- Took 5.5hrs compared to 30min
- Clustering of Pareto front experienced

Observations:

- All Pareto points have an initial inflation pressure of 101325 Pa
- Objectives are mutually supporting at constant burst pressures
- Lower bound to each constant burst pressure trend is caused occurs just before bottoming-out
- Change along points on Pareto front correspond to changing burst pressure at minimum geometry where bottoming out does not occur
- Concave Pareto Front

Summary and Conclusions

Single Objective Optimization

- The choice of valve concept drives the sensitivities observed in the system
- Drive towards lower geometries originally unexpected for pressure relief valve type venting mechanisms
- For PRV's, there are two opposing influences on the airbag geometry
- Smaller geometry \rightarrow More gas vented
- Larger geometry \rightarrow More stroke for impact attenuation
- The accuracy of this point is driven by the accuracy of the airbag shape function (change in geometry of the airbag as it strokes)
- The choice of step size drives the interpretation of the observed sensitivity when working with a noisy design space

Multi Objective Optimization

- Valve burst pressure drives location of designs along the Pareto front (at atmospheric inflation pressure and minimum geometry such that bottomingout does not occur)
- Mutually supporting objectives at constant burst pressures drive a concave Pareto front

Orion Alternative Landing Attenuation Concept Study

Thank You

Orion Alternative Landing Attenuation Concept Study

End of Presentation

Orion Alternative Landing Attenuation Concept Study

Backup slides

System Concept

Concept of Operations

Baseline Configuration

- Configuration chosen to attenuate impact loads at key regions within the body
- Cylindrical bags chosen for manufacturability
- Each bag to consist of venting mechanisms for gas expulsior 15

Brinkley Model

- Metric used to gauge the risk of injury to an occupant in an accelerating frame of reference
- Based on approximating the human as a spring-mass-damper system:

$$
\ddot{x}(t)+2 \xi \omega_{n} \dot{x}(t)+\omega_{n}^{2} x(t)=A(t)
$$

- Brinkley Direct Response Index is obtained from:

$$
D R=\omega_{n}^{2} x(t) / g
$$

- Risk of injury is measured by comparison with predefined Brinkley Limits, with a lower Brinkley Number corresponding Y to a lower risk of injury:

jury	X		Y		Z	
Direct Response Level	DR ${ }_{\text {x }}<0$	$\mathrm{DR}_{\mathrm{x}}>0$	$D \mathrm{P}_{\mathrm{Y}}<0$	$\mathrm{DR}_{\mathrm{Y}}>0$	$\mathrm{DR}_{\mathrm{z}}<0$	$\mathrm{DR}_{\mathrm{z}}>0$
Very Low (Nominal)	-22.4	31	-11.8	11.8	-11	13.1
Low (Off-Nominal)	-28	35	-14	14	-13.4	15.2
Moderate	-35	40	-17	17	-16.5	18
High Risk	-46	46	-22	22	-20.4	22.4

These values are used to calculate the β Number, which gives an overall indication of the risk to injury during a drop. $\beta<1$ indicates that the Brinkley criteria for the inputted level of injury risk has been satisfied

$$
\beta=\sqrt{\left(\frac{D R_{x}(t)}{D R_{x}^{\lim }}\right)^{2}+\left(\frac{D R_{x}(t)}{D R_{x}^{\lim }}\right)^{2}+\left(\frac{D R_{x}(t)}{D R_{x}^{\lim }}\right)_{16}^{2}}
$$

Multi-Objective Optimization

Objectives:

- Minimize Brinkley Index
- Minimize system mass (Airbag + Initial Internal Gas)

Method:

- Multi-Objective Genetic Algorithm (MATLAB gamultiobj.m)
- Can handle non-convex regions
- Population approach can lead to savings in $\stackrel{\sim}{\varsigma}$ computation time
- Ease and speed of implementation

Population Size	60
Population Encoding	Real Numbered Values
Selection	Two player tournament scheme. Rankings based on fitness score.
Insertion	1 member elitist scheme
Crossover Fraction	65%
Crossover Scheme	Splices the parents into two segments and combines them to produce a child

Baseline Airbag Venting Parameter Definition - Results

Initial Inflation Pressure

Orifice Diameter

Burst Acceleration

Summary \& Conclusions:

-For a fixed geometry, external orifice area has the most influence on the overall performance of the airbag system -Burst acceleration is the next most influential parameter, but its influence is far overshadowed by that of the external orifice area
-The system performance is essentially insensitive to the initial airbag pressure (over the low pressure range investigated)

Note:

Baseline Parameter Values

Parameter	Value
Test Mass	$5 \mathrm{lbs}(2.27 \mathrm{~kg})$
Radius	110 mm
Length	350 mm
Total Vent Orifice Area	$2 \times \varnothing\left(2-2.5^{\prime \prime}\right)$ holes
Initial Airbag Pressure	$125 \mathrm{kPa}=1.23 \mathrm{~atm}$
Burst Acceleration	-15 G s
Corresponding Burst Pressure	Approx. 130 kPa (4psig)

-Initial Airbag Pressure has since been updated based on using a pressure relief valve, rather than a burst disk

Generation 2 System Concept

MIT OpenCourseWare
http://ocw.mit.edu

ESD. 77 / 16.888 Multidisciplinary System Design Optimization

Spring 2010

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

