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Today’s Topics

• Sequential Linear Programming

• Penalty and Barrier Methods

• Sequential Quadratic Programming
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Technique Overview

Steepest Descent

Conjugate Gradient

Quasi-Newton

Newton

Simplex – linear

SLP – often not effective

SQP – nonlinear, expensive, common in engineering applications

Exterior Penalty – nonlinear, discontinuous design spaces

Interior Penalty – nonlinear

Generalized Reduced Gradient – nonlinear

Method of Feasible Directions – nonlinear

Mixed Integer Programming

UNCONSTRAINED

CONSTRAINED



4 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Standard Problem Definition 
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For now, we consider a single objective function, J(x).

There are n design variables, and a total of m

constraints (m=m1+m2).

For now we assume all xi are real and continuous.
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Optimization Process

Calculate J(xq)

Calculate Sq

Perform 1-D search

xq = xq-1 + Sq

x0, q=0

Converged? Done
yesno

q=q+1
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Constrained Optimization

Definitions:

• Feasible design: a design that satisfies all 

constraints

• Infeasible design: a design that violates one or 

more constraints

• Optimum design: the choice of design variables 

that minimizes the objective function while 

satisfying all constraints

In general, constrained optimization algorithms try to cast 

the problem as an unconstrained optimization and then 

use one of the techniques we looked at in Lecture 7.
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Linear Programming

Most engineering problems of interest are nonlinear

• Can often simplify nonlinear problem by linearization

• LP is often the basis for developing more 

complicated NLP algorithms

Standard LP problem:

All LP problems can be converted to this form.
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Linear Programming

To convert inequality constraints to equality constraints, 

use additional design variables:

where xn+1 0

xn+1 is called a slack variable

e.g. the constraint 

x1+x2 1

can be written

x1+x2+x3=1

xi 0,  i=1,2,3

1

1 1

  becomes  
n n

ji i j ji i n j

i i

a x b a x x b

if x3=0, this 

constraint is 

active
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Simplex Method

Solutions at the “vertices” of the design space are called basic 

feasible solutions.

The Simplex algorithm moves from BFS to BFS so that the 

objective always improves.

feasible 

region

basic 

feasible 

solution
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Sequential Linear Programming

Consider a general nonlinear problem linearized via first order 

Taylor series:
0 0

0 0

0 0
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where 0x x x

This is an LP problem with the design variables contained in x. The 

functions and gradients evaluated at x0 are constant coefficients.
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Sequential Linear Programming

1. Initial guess x0

2. Linearize about x0 using first-order Taylor series

3. Solve resulting LP to find x

4. Update: x1 = x0 + x

5. Linearize about x1 and repeat:

xq = xq-1 + x

where x is the solution of an LP (model linearized 

about xq-1).
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Sequential Linear Programming

• Linearization approximation is only valid close 

to x0

• Need to restrict size of update x

• Not considered to be a good method
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Nonlinear vs. Linear Constraints

Linear constraints:

• start from initial feasible point, then all 

subsequent iterates are feasible

• can construct search direction & step 

length so that constraints are satisfied

• improvement from xk to xk+1 based on J(x)

Nonlinear constraints:

• not straightforward to generate a 

sequence of feasible iterates

• if feasibility is not maintained, then need to 

decide whether xk+1 is “better” than xk

feasible 

region
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Merit Function

Is objective 

reduced?

Are constraints 

satisfied?

merit 

function

merit function = f(J(x), g(x), h(x))

examples: penalty function methods, barrier function methods
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Subproblems

• Many optimization algorithms get to the optimum by generating and 

solving a sequence of subproblems that are somehow related to the 

original problem.

• Typically there are two tasks at each iteration:

1. Calculate search direction

2. Calculate the step length

• Sometimes, the initial formulation of a subproblem may be defective

i.e. the subproblem has no solution or the solution is 

unbounded

• A valid subproblem is one for which a solution exists and is well 

defined

• The option to abandon should be available if the subproblem 

appears defective

• It is possible that a defective subproblem is an accurate reflection of 

the original problem having no valid solution
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Penalty and Barrier Methods
General Approach:

– minimize objective as unconstrained function

– provide penalty to limit constraint violations

– magnitude of penalty varies throughout optimization

– called sequential unconstrained minimization 

techniques (SUMT)

– create pseudo-objective:

( , ) ( ) ( )p pr J r Px x x

J(x) = original objective function

P(x) = imposed penalty function

rp = scalar multiplier to determine penalty magnitude

p = unconstrained minimization number

Penalty method approaches useful for incorporating 

constraints into derivative-free and heuristic search algorithms.
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Penalty Methods

Four basic methods:

(i) Exterior Penalty Function Method

(ii) Interior Penalty Function Method

(Barrier Function Method)

(iii) Log Penalty Function Method

(iv) Extended Interior Penalty Function Method

Effect of penalty function is to create a local minimum of 

unconstrained problem “near” x*.

Penalty function adds a penalty for infeasibility, barrier 

function adds a term that prevents iterates from becoming 

infeasible.
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Exterior Penalty Function Method

1 22 2

1 1

( ) max 0, ( ) ( )
m m

j k

j k

P g hx x x

• if all constraints are satisfied, then P(x)=0

• p = penalty parameter; starts as a small number and 

increases

• if p is small, (x, p) is easy to minimize but yields large 

constraint violations

• if p is large, constraints are all nearly satisfied but 

optimization problem is numerically ill-conditioned

• if optimization stops before convergence is reached, the 

design will be infeasible

( , ) ( ) ( )p pJ Px x x
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Quadratic Penalty Function

1 2
ˆ

2 2

1 1

ˆ( , ) ( ) ( ) ( )
m m

Q p p j k

j k

J g hx x x x

• contains those inequality constraints that are 

violated at x.

• It can be shown that

• Q(x, p) is well-defined everywhere

ˆ ( )jg x

lim ( )
p

px* x*

Algorithm: -choose 0, set k=0

-find min Q(x, k) xk*

-if not converged, set k+1 > k, k k+1 and repeat

Note: xk* could be infeasible wrt the original problem 
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Quadratic Penalty Function Example

10

J(x)

x

Q(x, rp)

= 1

*

= 10

*

= 5

*

= 2

*

Q(x, )=x2+ (1-x)2

2min ( )

s.t.  1 0

J x x

x
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Absolute Value Penalty Function
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1 1
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where           contains those inequality constraints which 

are violated at x.

• A has discontinuous derivatives at points where           

or          are zero.

• The crucial difference between Q and A is that we 

do not require p for x* to be a minimum of A, so 

we can avoid ill-conditioning

• Instead, for some threshold      , x* is a minimum of A

for any 

• Sometimes called exact penalty functions

ˆ ( )jg x

( )kh x

p

p p
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Absolute Value Penalty Function Example

10

J(x)

= 2

= 5

= 10

x

A(x, )

(x, )=x2+ |1-x|

2min ( )

s.t.  1 0

J x x

x

*

= 1
= 1.5

*
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Interior Penalty Function Method
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• rp = barrier parameter; starts as a large positive number 

and decreases

• barrier function for inequality constraints only

• sequence of improving feasible designs

• (x,rp , p) discontinuous at constraint boundaries

gj(x)
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x x x
x

Pj (x)

(Barrier Function Method)
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Barrier Function Method
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m
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• often better numerically conditioned than

• penalty function has a positive singularity at the 

boundary of the feasible region

• penalty function is undefined for gi(x)>0

•

1
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Barrier Function Example

10

J(x)

r = 5

r = 1

r = 0.5

r = 0.1

x

L(x,r)

10

L(x,r)=x2-r ln(x-1)

2min ( )

s.t.  1 0

J x x

x
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Extended Interior Penalty Function Method
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- is a small negative number, and marks transition from interior 

penalty to extended penalty

- must be chosen so that has positive slope at constraint 

boundary

-can also use quadratic extended and variable penalty functions

Combine features of interior/exterior methods

-linear extended 

penalty function
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Sequential Quadratic Programming

• Create a quadratic approximation to the Lagrangian

• Create linear approximations to the constraints

• Solve the quadratic problem to find the search 

direction, S

• Perform the 1-D search

• Update the approximation to the Lagrangian
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Sequential Quadratic Programming 

Create a subproblem

with quadratic objective function:

• Design variables are the components of S

• B=I initially, then is updated to approximate H 

(as in quasi-Newton)

T 1
min ( ) ( ) ( )

2

k k k k TQ J JS x x S S BS

T

1

T

2

s.t. ( ) ( ) 0 1, ,

( ) ( ) 0 1, ,

k k k

j j

k k k

k k

g g j m

h h k m

x S x

x S x

and linear constraints
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Incompatible Constraints

• The constraints of the subproblem can be incompatible, 

even if the original problem has a well-posed solution

• For example, two linearized constraints could be linearly 

dependent

• This is a common occurrence in practice

• Likelihood of incompatible constraints reduced by allowing 

flexibility in RHS (e.g. allow scaling factors in front of gj(x
k) 

term)

• Typically =0.9 if constraint is violated and =1 otherwise

• Doesn’t affect convergence, since specific form of 

constraint is only crucial when xk is close to x*

T

1( ) ( ) 0 1, ,k k k

j j jg g j mx S x
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Sequential Quadratic Programming

• Widely used in engineering applications e.g. NLOpt

• Considered to be one of the best gradient-based 

algorithms

• Fast convergence for many problems

• Strong theoretical basis

• MATLAB®: fmincon (medium scale)
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Lecture Summary

We have seen the following nonlinear techniques:

• Penalty and Barrier Methods

• Sequential Quadratic Programming

It is important to understand

• when it is appropriate to use these methods

• the basics of how the method works

• why the method might fail

• what your results mean (numerically vs. physically)
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