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Outline

• Introduction to approximation methods
• Data fit methods

– Polynomial response surfaces
– Kriging

• Model order reduction
– Reduced-basis methods
– Proper orthogonal decomposition

• Multifidelity methods
– Trust-region model management
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Approximation Methods

• Replace the simulation with an approximation 
or “surrogate”

• Uses some data from the initial simulation
– Can be global or local

• Surrogate is much less computationally 
expensive to evaluate

• Not just optimization
– Uncertainty Quantification (e.g. Monte Carlo 

simulation methods)
– Visualization 
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Why Approximation Methods
We have seen throughout the course the constant trade-off 
between computational cost and fidelity.
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Approximation methods provide a way to get high-fidelity 
model information throughout the optimization without the 
computational expense.
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Data Fit Methods

• Sample the simulation at some number of 
design points
– Use DOE methods, e.g. Latin hypercube, to select 

the points
• Fit a surrogate model using the sampled 

information
• Surrogate may be global (e.g., quadratic 

response surface) or local (e.g., Kriging 
interpolation)

• Surrogate may be updated adaptively by 
adding sample points based on surrogate 
performance (e.g., EGO)



6 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

Polynomial Response Surface Method

• Surrogate model is a local or global 
polynomial model

• Can be of any order
– Most often quadratic; higher order requires many 

samples
• Advantages: Simple to implement, visualize, 

and understand, easy to find the optimum of 
the response surface

• Disadvantages: May be too simple, doesn’t 
capture multimodal functions well
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Global Polynomial Response Surface

• Fit objective function with a polynomial
• e.g. quadratic approximation:

• Update model by including a new function evaluation 
then doing least squares fit to compute the new 
coefficients
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Global Polynomial Response Surface

Estimation problem: J Xc
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Kriging

• Adopted from the geostatistics literature
• Based on Gaussian process models
• Assumes that the output function values are 

correlated in design space, i.e. closer points 
are more highly correlated

• Can have multiple extrema
• Interpolating method

– Exact at sample points
• Gives estimate of mean squared error

– Can use to give error bounds
– Can use to choose new sample points
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Kriging: Mathematical Background

• We want to make a prediction of y at a point x
• Uncertain of value: model as a random 

variable, normally distributed with mean 
and variance 2

• Consider two points xi and xj

• Expect values to be close if the distance 
between them is small

• Formalize this idea by setting:
ipn
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Kriging Basis Functions
ipn
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Kriging Mathematics Cont.Kriging Mathematics Cont.
• Choose μ,  pi, and θi to maximize the 

likelihood of observing the datag
– Detailed equations in Giunta and Watson (1998), 

derivation in Jones (2001)

• Kriging predictor isKriging predictor is
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each centered at a sample point
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Kriging Extensions

• Can combine polynomial RSM and Kriging
– Apply Kriging to difference between sample values 

and polynomial approximation

• Soft Kriging allows upper and lower bounds, 
prior CDFs

• Efficient Global Optimization (EGO)
– Uses Kriging to find “expected improvement”

– Samples the point with the largest expected 
improvement and adds it to the sample set



Efficient Global OptimizationEfficient Global Optimization
• Jones 1998; based on probability theory

• Assumes: 

: regression term
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xTβ• : regression term

• : error from
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regression model is normally
distributed, with mean μ(x)
and variance σ2(x)
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• Estimate function values with a
Kriging model Surrogate model is updatedg g
– Predicts mean and variance

• Evaluate function at “maximum expected
mk (x) = ¹ (x) + ¯T x

Surrogate model is updated 
adaptively; kth surrogate is

• Evaluate function at maximum expected 
improvement location(s)” and update model
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Bayesian Model Calibration

• Model the error between
a high-fidelity and a 
low-fidelity function
[Kennedy2000, 2001; Huang2006]

• If the low-fidelity function is 
“good”, converges faster

• Global calibration procedure

)()()()( xxxx klowkhigh fmf
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Comparison of Data Fit Methods
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Reduced-Basis Methods

Consider r feasible design vectors: x1, x2, ..., xr

We could consider the desired design to be a linear 
combination of these basis vectors:
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Reduced-Basis Methods

We can now optimize J(x) by finding the optimal values for 
the coefficients i.

dimension n dimension r

• Do one full-order evaluation of resulting answer
• Approach is efficient if r << n
• Will give the true optimum only if x* lies in the span of {xi}
• Basis vectors could be 

– previous designs
– solutions over a particular range (DoE)
– derived in some other way (e.g., proper orthogonal 

decomposition)
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Reduced-Basis Example

Example using a reduced-basis approach (van der 
Plaats Fig 7-2): airfoil design for a unique application.

• Many airfoil shapes with known performance are 
available

• Design variables are (x,y) coordinates at chordwise 
locations (n~100)

• Use four basis airfoil shapes (low-speed airfoils) which 
contain the n geometry points

• Plus two basis shapes which allow trailing edge 
thickness to vary

• r=6 (r<<n)
• Optimize for high speed, maximum lift with a constraint 

on drag
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Reduced-Basis Example

From Vanderplaats 
Figs. 7-2 and 7-3, 
pg. 260 

result of optimization
using reduced basis

Basis functions

Minimum-drag airfoil.

Airfoil basic shapes.

Basic shape 1

NACA 2412

NACA 64, -412

NACA 65, -415

NACA 65, A215

y--x/c

y-
--x/c

y--0

y--0

Basic shape 2

Basic shape 3

Basic shape 4

Basic shape 5

Basic shape 6

Image by MIT OpenCourseWare.
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Proper Orthogonal Decomposition

Consider K snapshots
(solutions at selected times or parameter values)

Choose the n basis vectors 
to be left singular vectors of the snapshot matrix, with 
singular values

This is the optimal projection in a least squares sense:

Form the snapshot matrix

(aka Karhunen-Loève expansions, Principal Components Analysis, 

Empirical Orthogonal Eigenfunctions, …)
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Multifidelity Methods

• Sometimes there is more than one model for 
the same system
– e.g. Navier Stokes and thin-airfoil theory for wing 

design, finite-element and beam theory for structural 
design

• Low-fidelity model may provide good 
information over a wide range, at much lower 
computational cost

• Would like to find optimum of high-fidelity 
problem, but use low-fidelity model most of the 
time
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A Hierarchy of Models

Images of Figure 1b, 4, and 8 removed due to copyright restrictions. 
Figures from: Choi, S, Alonso, JJ, Kim, S., Kroo, IM. Two-level multi-fidelity 
design optimization studies for supersonic jets. 43th AIAA Aerospace Sciences 
Meeting & Exhibit. January 2005.

Image of Low-fidelity EM and High fidelity EM models 
removed due to copyright restrictions.
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Trust-Region Model Management

• A rigorous method for determining when to 
use high-fidelity function calls

• Solves a series of subproblems:
Minimize 

Subject to
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constraints.



TrustTrust--Region Model ManagementRegion Model Management

• Size of trust region updated depending on 
how well surrogate predicts high-fidelity 
function value 
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Trust-Region Model Management

• Trust region size update rules:

Reject step

Accept step

Accept step

Accept step
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Trust-Region Demonstration
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Trust-Region Model Management

• Calls high-fidelity analysis once per iteration
• Calls surrogate analysis many times per 

iteration
• Provably convergent to local minimum of high 

fidelity function if surrogate is first-order 
accurate at center of trust region

• Extensions to the case of            in Robinson 
et al. (2008).

• Derivative-free approaches in Conn et al. 
(2009)

xx ˆ
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Corrections
• Include corrections in order to enforce consistency 

and gain provable convergence of trust-region 
approach

• Additive Correction:

• Multiplicative Correction:

)()()(ˆ xxx loJJ

low-fidelity modelsurrogate model

)()()(ˆ xxx loJJ



Multifidelity Optimization

• Combines several elements:
– Trust regions
– Bayesian model calibration
– Adaptive sampling
– Surrogate models (e.g., interpolation 

models using Kriging)
– Estimation theory

• Active area of research
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Combining Estimates of Multifidelity 
Models

• Use Kalman filtering approach to compute combine estimate
• Maximum likelihood estimate weights each model according to its variance 

(pay more attention to models in which we have more confidence)

¹ est(x) = ¹ med(x)
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low
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low
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• Extends naturally to 
case with more than 
two models; much 
more efficient than 
nesting (March 2010)

Image by MIT OpenCourseWare.
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Lecture Summary

• A number of ways to create approximations, 
or surrogates

• Each has its own area of application, 
advantages, and disadvantages

• Data fit surrogates
– Polynomial response surfaces
– Kriging

• Model order reduction
– Reduced basis
– Proper orthogonal decomposition

• Multifidelity methods
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