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Today’s Topics

• MDO definition
• Optimization problem formulation
• MDO in the design process
• MDO challenges
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MDO Definition

What is MDO ?

• A methodology for the design of complex engineering 
systems and subsystems that coherently exploits the 
synergism of mutually interacting phenomena

• Optimal design of complex engineering systems which 
requires analysis that accounts for interactions amongst 
the disciplines (= parts of the system)

• “How to decide what to change, and to what extent to 

change it, when everything influences everything else.”

Ref: AIAA MDO website http://www.aiaa.org (Click Inside AIAA, Technical Committees)

http://www.aiaa.org/
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Engineering Design Disciplines

Aircraft:
Aerodynamics
Propulsion 
Structures
Controls
Avionics/Software
Manufacturing
others

Spacecraft:
Astrodynamics
Thermodynamics
Communications
Payload & Sensor
Structures
Optics
Guidance & Control

Automobiles:
Engines
Body/chassis
Aerodynamics
Electronics
Hydraulics
Industrial design
others

Fairly mature, but advances in theory, methodology,
computation and application foster substantial payoffs
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Multidisciplinary Aspects of Design

Emphasis is on the multidisciplinary nature of the
complex engineering systems design process. Aero-
space vehicles are a particular class of such systems.

Structures

Aerodynamics

Control
Emphasis in recent years has 
been on advances that can 

be achieved due to the inter-
action of two or more 

disciplines.
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System Level Optimization

Why system-level, multidisciplinary optimization ?

• Disciplinary specialists tend to strive towards improvement 
of objectives and satisfaction of constraints in terms of the 
variables of their own discipline

• In doing so they generate side effects - often unknowingly-
that other disciplines have to absorb, usually to the 
detriment of the overall system performance
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Aircraft “Optimization”

Marketing: maximize 
passenger volume
 Cabin diameter

Aero: maximize L/D
 Aspect Ratio 

Structures: minimize
structural mass

Wing-root moment

Propulsion: minimize
specific fuel consumption 

(SFC) Bypass Ratio

D
AR

M

BPR
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System-level Optimization

( / )
ln initial

final

WV L D
R

g SFC W

Bréguet
Range
Equation

R = Range [m]
V = Flight velocity [m/s]
SFC = Specific Fuel Consumption [kg/s/N]
L/D = Lift-over-Drag ration [N/N]
g = gravitational acceleration [m/s2]
Winitial = Initial (takeoff) weight [N]
Wfinal = Weight at end of flight [N]
Wfuel=Winitial-Wfinal  Fuel quantity [N]

All

StructuresPropulsion

AeroMarketing
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Human Interface Aspects of Design

It is wrong to think of MDO as “automated” or “push-
button” design:

• The human strengths (creativity, intuition, decision-
making) and computer strengths (memory, speed, 
objectivity) should complement each other

• The human will always be the Meta-designer
• Challenges of defining an effective interface –

continuous vs. discrete thinking
• Challenges of visualization in multidimensional space, 

e.g. search path from initial design to final design

Human element is a key component in
any successful system design methodology
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Quantitative vs. Qualitative

Human mind is the driving force in the design process. MDO is a 
way of formalizing the quantitative tool to apply the best trade-offs. 

Image by MIT OpenCourseWare.

Qualitative Effort Stream

Quantitative Effort Stream

Time

Answer Answer Answer Answer

Question Question Question Question

N
ew

 Vehicle D
esign

Parallel, qualitative, and quantitative efforts in design.

Human inventiveness, creativity, intuition, experience 

Quantitative, objective, computational

Conceiving 
different 
concepts

Evaluation, 
selection of 
concepts
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Architecture vs. Design

• Architecture selects the concept,
 

decomposition and
 

mapping 
of form to function

• Architecture establishes the vector of design and operating 
parameters

• Design selects the values of the vector of variables
• This is what optimization is good for
• Some work in “architecture” is just an exhaustive search over 

the design of one architecture

Initial WaterSurface AreaQuantity

Material Thickness Material     Well 
Thickness

Length, width,
     Height

Whole Product
      System

Cooler

Box with BottomTop

Ice

Design Variables
           X

Operating parameters
               P

Image by MIT OpenCourseWare.
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Optimization Problem Formulation
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Optimization Aspects of Design

• Optimization methods have been combined with design 
synthesis and parametric analysis for ca. 40 years

• Traditionally used graphical methods to find maximum or 
minimum of a multivariate function (“carpet plot”), but….

Graphics break down
above 3-4 dimensions

O
b

je
c
ti

v
e
 J

(x
)

Where is min J(x) ?

Where is max J(x) ?

Caution: local extrema !

“peaks”
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Combinatorial Explosion

• Any design can be defined by a vector in 
multidimensional space, where each design 
variable represents a different dimension

• For n > 3 a combinatorial “explosion” takes place 

and the design space cannot be computed and 
plotted in polynomial time

• Numerical optimization offers an alternative to the 
graphical approach and “brute force” evaluation

During past three decades much progress has
been made in numerical optimization
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Formal Notation
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This is the problem formulation
that we will discuss this semester.

Quantitative side of the design problem may be formulated
as a problem of Nonlinear Programming (NLP)
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Objectives

1

2

3

cost   [$]

range  [km]

weight [kg]

data rate [bps]

ROI    [%]

i

z

J

J

J

J

J

J

The objective can be a vector J of z system responses
or characteristics we are trying to maximize or minimize

Often the objective is a
scalar function, but for
real systems often we 
attempt multi-objective
optimization: 

x J(x)

Some objectives can be
conflicting.
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Design Variables

1

2

3

aspect ratio  [-]

transmit power [W]

# of apertures [-]

orbital altitude [km]

control gain [V/V]

i

n

x

x

x

x

x

x

Design vector x contains n variables that form the design space

During design space exploration or optimization we change the 
entries of x in some rational fashion to achieve a desired effect

ix can be …..

Real:

Integer:

Binary:

Boolean:

Design variables are “controlled” by the designers
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Parameters

Parameters p are quantities that affect the objective J,
but are considered fixed, i.e. they cannot be changed  
by the designers.

Sometimes parameters p can be turned into design 
variables xi to enlarge the design space.

Sometimes parameters p are former design variables 
that were fixed at some value because they were found 
not to affect any of the objectives Ji or because their 
optimal level was predetermined.
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Constraints

Constraints act as boundaries of the design space x 

and typically occur due to finiteness of resources or 
technological limitations of some design variables.

Often, but not always, optimal designs lie at the 
intersection of several active constraints

Inequality constraints:

Equality constraints:

Objectives are what we are trying to achieve 
Constraints are what we cannot violate
Design variables are what we can change
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Bounds:
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Constraints versus Objectives

It can be difficult to choose whether a condition is a 
constraint or an objective.

For example: should we try to minimize cost, or should 
we set a constraint stating that cost should not exceed 
a given level.

The two approaches can lead to different designs.

Sometimes, the initial formulation will need to be 
revised in order to fully understand the design space.

In some formulations, all constraints are treated as 
objectives (physical programming).
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Example Problem Statement

Minimize the take-off weight of the aircraft by 
changing wing geometric parameters while 
satisfying the given range and payload 

requirements at the given cruise speed.

objective function

constraints parameter

design variables
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Group Exercise... (10 mins)

For your group‟s system:

1. Consider the preliminary design phase. 
Identify:

-important disciplines
-potential objective functions
-potential design variables
-system parameters
-constraints and bounds

2. Report out
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MDO in the Design Process
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What MDO really does

MDO mathematically traces a path in the design space 
from some initial design xo towards improved designs 
(with respect to the objective J).

It does this by operating on a large number of variables 
and functions simultaneously - a feat beyond the power 
of the human mind. 

The path is not biased by intuition or experience.

This path instead of being invisible inside a “black box” 

becomes more visible by various MDO techniques such 
as sensitivity analysis and visualization

Optimization does not remove the designer from
the loop, but it helps conduct trade studies
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MSDO Framework

Discipline A Discipline B

Discipline C

Simulation Model

Tradespace
Exploration

(DOE)

Optimization Algorithms

Multiobjective
Optimization

Numerical Techniques
(direct and penalty methods)

Heuristic Techniques
(SA,GA)

1

2

n

x

x

x

Design Vector

Coupling

1

2

z

J

J

J

Approximation
Methods

Coupling

Sensitivity 
Analysis

Isoperformance

Objective Vector

Output Evaluation
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Simulation versus Optimization

There are two distinct components of the MSDO 
process:
The optimization algorithm decides how to move 
through the design space.
The simulation model evaluates designs chosen by the 
optimizer. Both objective functions and constraints must 
be evaluated.
Sometimes, disciplinary simulation models can be used 
in an optimization framework, but often they are not 
appropriate.
There are several different approaches to couple the 
optimizer and the simulation models (Lecture 4).
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Typical Process in MDO

(1) Define overall system requirements 
(2) Define design vector x, objective J and constraints
(3) System decomposition into modules
(4) Modeling of physics via governing equations at the 

module level - module execution in isolation
(5) Model integration into an overall system simulation
(6) Benchmarking of model with respect to a known 

system from past experience, if available
(7) Design space exploration (DoE) to find sensitive

and important design variables xi

(8) Formal optimization to find min J(x)
(9) Post-optimality analysis to explore sensitivity and 

tradeoffs: sensitivity analysis, approximation 
methods, isoperformance, include uncertainty
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In Practice...

(i) Step through (1)-(8)
(ii) The optimizer will use an error in the problem setup to 
determine a mathematically valid but physically 
unreasonable solution 

OR
The optimizer will be unable to find a feasible solution 
(satisfies all constraints) 
(iii) Add, remove or modify constraints and/or design 

variables
(iv) Iterate until an appropriate model is obtained

Although MDO is an automated formalization of the design 
process, it is a highly interactive procedure...



29
© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

MDO in the Design Process

baseline 
design

optimized 
design

WingMOD

CFD
outer mold line

configurator

performance

propulsion

weights

aerodynamics

engine deck

economics

weights

configuration drawing

• MDO is only one part of the design 
process

• couples with other design tools
• invaluable but not always complete



30
© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

MDO Uses

• The „MD‟ portion of „MDO‟ is important on its own

• Often MDO is used not to find the truly optimal 
design, but rather to find an improved design, or even 
a feasible design ...

Feasible Improved Optimal Pareto

Range of design objectives

from Giesing, 1998
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MDO Challenges
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MDO Challenges
• Fidelity/expense of disciplinary models

Fidelity is often sacrificed to obtain models with short 
computation times.

• Complexity
Design variables, constraints and model interfaces must 
be managed carefully.

• Communication
The user interface is often very unfriendly and it can be 
difficult to change problem parameters.

• Flexibility
It is easy for an MDO tool to become very specialized and 
only valid for one particular problem.

How do we prevent MDO codes from becoming complex, 

highly specialized tools which are used by a single person 

(often the developer!) for a single problem?



33
© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Fidelity vs. Expense

Level of MSDO

Fi
de

lit
y 

Le
ve

l

trade 
studies

limited 
optimization/iteration

full 
MDO

empirical 
models

intermediate 
fidelity

(e.g. vortex lattice, 

beam theory)

high fidelity
(e.g. CFD,FEM)

from Giesing, 1998

can we do 

better?

can the 

results be 

believed?

how to 

implement?
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Breadth vs. Depth

System Breadth

D
is

ci
pl

in
ar

y 
D

ep
th

focus on a 
subsystem

all critical 
constraints

complete 
system

empirical 
relations

intermediate 
fidelity

(e.g. vortex 

lattice, beam 

theory)

high fidelity
(e.g. 

CFD,FEM)

is design 

practical?

can the 

results be 

believed?

how to 

implement?
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MDO Pros/Cons

Advantages
• reduction in design time
• systematic, logical design procedure
• handles wide variety of design variables & constraints
• not biased by intuition or experience

Disadvantages
• computational time grows rapidly with number of dv‟s

• numerical problems increase with number of dv‟s

• limited to range of applicability of analysis programs
• will take advantage of analysis errors to provide 

mathematical design improvements
• difficult to deal with discontinuous functions
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Lecture summary

Next two lectures will address Modeling & 
Simulation and Problem Decomposition

• MDO is not a stand-alone, automated design process

• MDO is a valuable tool that requires substantial human 
interaction and complements other design tools

• Elements of an MDO framework

• MDO Challenges
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