
Wind Turbine Blade Design Optimization 

Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 

We develop a methodology for analyzing wind turbine blade geometries and pitch con
trol schemes over a range of incoming wind speeds. We use this model for an orthogonal 
array design of experiments, a gradient-based sequential quadratic programming optimiza
tion, and a multi-objective genetic algorithm to maximize the expected power output while 
minimizing the blade volume and structural stress violations. Design of experiments gen
erates good results with little expense. Sequential quadratic programming with Hessian 
re-scaling and multiple starting points generates good design vectors with a large compu
tational expense, and heuristic algorithms such as the genetic algorithm are not suited to 
this problem. The best design point achieves between 60 and 70% of the Betz limit for 
efficiency for a large range of incoming wind speeds. 

Nomenclature 

R Blade radius, m 
Qmax Maximum generator torque, N-m 
t Blade shell thickness, m 
k Cut-off velocity in standard deviations above the mean wind speed 
T Twist distribution vector, radians 
F Foil shape parameter distribution, non-dimensional 
C Chord length distribution, m 
β Pitch control curve, radians 
x Design vector 
J(x, param) Objective function 
PE Expected power output, W 
P Turbine power at a particular wind speed, W 
Q Turbine torque at a particular wind speed, N-m 
Vblades Blade material volume, m3 

ξ(x, param) Penalty function 
σr 
max Maximum blade stress, MPa 

σallowable Maximum allowable blade stress, MPa 
cweibull Scale parameter of the Weibull distribution of incoming wind speeds 
kweibull Shape parameter of the Weibull distribution of incoming wind speeds 
ω Angular velocity, rad/s 
Ft/ΔR,Ft/ΔR Tangential and axial aerodynamic load distributions on the blade, N/m 
v0 Incoming wind speed ahead of the blade, m/s 
H Hessian matrix, matrix of second derivatives 

I. Motivation 

As renewable energies become a growing part of the energy portfolio, focus is being put on increased 
performance and efficiency of proven sources such as horizontal axis wind turbines. Modern commercial 
power wind turbines are predominantly horizontal-axis, three-bladed behemoths, with a fixed blade design 
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that is adapted to varying wind conditions by a blade pitch control mechanism. They are complex systems 
whose design requires the integration of many engineering disciplines including aerodynamics, structures, 
controls, and electrical engineering. Previous wind turbine design optimization techniques have focused on 
specific regions of interest, including optimal control,1 optimal blade shape, and site-specific performance 
increases.2 Our goal was to combine all of these with a simplified analysis model to make computation 
tractable, but to design a blade from scratch with optimal performance over a site-specific wind profile 
probability distribution. 

II. Problem Formulation 

A. Goal 

The goal of our project was to design an electricity-generating wind turbine in a manner that maximizes 
power output over all expected wind conditions while minimizing construction costs. The predominant 
expense of wind turbine construction is the manufacture of the turbine blades.3 As such, we focus on 
minimizing the amount of material required to make the blade, while maximizing power output. 

B. System Boundary 

The considered disciplines include aerodynamics, structures, and control. We consider a range of incoming 
velocities that represent the possible operating conditions of the turbine, calculating the expected power 
output and extreme structural load over this range. We model the generator as a resistive torque and a 
constraint on the maximum torque allowed, and design a control system to keep the blades at the optimal 
pitch angle for a given incoming wind velocity. We do not consider tower design, nor do we consider nacelle 
shape. However, we assume there is no wind within 20% of the blade radius, roughly the expected nacelle 
size. To further limit our design space, we assumed a three-bladed design with aluminum blades. We choose 
three blades because an initial design of experiments (DOE) test showed that three blades outperformed 
both four and five-bladed designs in almost all cases. Although modern blades are often being constructed 
with composites, our knowledge of structural behavior in composites is limited, and we therefore elected to 
assume aluminum blades. Finally, we assume that our wind turbine has a control system that allows it to 
feather the blades in a manner that the structural stresses are alleviated when the wind speed is too high. 

C. Design Vector 

In order to perform numerical optimization, the design must be broken down into a list of decision variables 
and parameters that completely define the design. In order to reduce the order of our model, we used a 
minimal number of design variables to define the blade shape but then mapped the design vector into a 
higher dimensional discretization for analysis by using Piecewise Cubic Hermite Interpolating Polynomials 
(PCHIP). The bounds were chosen to mirror the physical constraints of the wind turbine design. For 
example, the blade radius is limited to 16.15 m, because this is the standard flatbed truck length of 52 feet, 
and each blade would need to be transported to the site. Also, the sum of the bounds for the twist angle 
and pitch control angles is equal to a range from zero to ninety degrees. This ensures a realistic range of 
feasible geometric blade angles. The design vectors and bounds are shown in Table 1. In addition, a set 
of parameters that include physical constants such as air density, or fixed design parameters such as the 
number of turbine blades, are defined in Table 2. For the twist distribution, the twist at the hub is assumed 
to be zero, so only two decision variables for the value of twist at the midpoint and tip of the blade specify 
the entire distribution. Similarly, the foil shape parameter specifies a linear combination of two airfoil shapes 
and characteristics. The foil at the root is the S814 foil, and foil at the tip is the S813 foil, as specified by.4 

The value of the foil shape is considered to be zero at the root and one at the tip, and therefore, only a 
single decision variable is required to specify the parameter at the midpoint. Both the chord and control 
curve distributions are specified by three points. Also note that angles are specified in radians in our codes, 
but are displayed in degrees in figures for convenience. 

D. Objective 

The performance of the turbine can be measured as the cost of producing a unit amount of power, or 
inversely, the power output obtained by a given initial cost. We chose to measure the performance of the 
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Table 1: Decision Variables 

Decision variable 

Blade radius 

Maximum generator torque 

Blade shell thickness 

Maximum design wind speed 

Twist distribution 

Foil shape distribution 

Chord length distribution 

Pitch control curve 

Symbol 

R 

Qmax 

t 

k 

T 

F 

C 

β 

Dimension 

1 

1 

1 

1 

2 

1 

3 

3 

Lower bnd. 

5.00 

1000 

0.004 

0 

0 

0 

0.1 

0 

Upper bnd. 

16.15 

20000 

0.020 

4 

π/4 

1 

10 

π/4 

Units 

meters 

Newton-meters 

meters 

std. dev. above mean 

radians 

non-dimensional 

meters 

radians 

Table 2: Selected Design Parameters 

Parameter Symbol Value Units 

Blade material yield strength σY 20 MPa 

Weibull distribution scale parameter cweibull 5 

Weibull distribution shape parameter kweibull 2.2 

Points in blade discretization n 11 

Number of wind speeds in Weibull integration nW 7 

turbine as the expected power output over a set of incoming wind velocities given by a Weibull distribution 
with site-specific shape coefficients divided by the volume of material required to construct the turbine blades 

Expected Power Output PE (x, param)
Objective = J(x, param) = = , (1)

Blade Material Volume Vblades(x, param) 

where x is the turbine design vector as defined in Table 1, param is a set of fixed parameters as defined in 
Table 2, PE is the expected power in Watts, and Vblades is the combined material volume of all blades in m3 . 
Together, x and param completely define a wind turbine design and all the constant parameters required to 
derive the expected power output, blade volume, and blade structural stresses. 

E. Constraints 

In order to make our code as general as possible, and to allow for use with heuristic algorithms, we decided 
to model our structural stress constraints in terms of a penalty function as opposed to including them 
explicitly. While logarithmic barrier functions are extremely attractive in terms of convergence properties, 
they are typically more useful for convex feasible sets, and it is important to change the barrier coefficient 
at the correct rate so that the solution converges quickly and never becomes infeasible.5 Since we have 
little intuition or knowledge to predict when and how the structural stresses will exceed their limits and the 
feasible space is likely non-convex, we elected instead to employ a square-term penalty function of the form �� � �2 

� 
ξ(x, param) = (σr , (2)ρpenalty max − σallowable)

+ 

where ξ(x, param) is the penalty function of a particular design, (arg)+ means max(arg, 0), ρpenalty is the 
penalty coefficient applied to each blade stress violation, σr is the maximum stress in MPa at a particular max

blade section r over all operating wind speeds, and σallowable is a fraction of the yield stress, we chose 70%. 
Because the stress violations are all in the same units, we applied one common penalty coefficient to all 
blade sections. Note that when σmax < σallowable for all blade radii, ξ(x, param) = 0. For aluminum with 
σY = 20 MPa, σallowable = 70% × 20 MPa = 14 MPa. 
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III. Methodology 

A. N2 Diagram 

As a concise way of summarizing our analysis code, its modules, the interdependencies between modules, 
and the inclusion of optimization, we present an N2 diagram of our analysis code in Figure 1. Here Q is the 
turbine torque, P is the power at a particular point, Ft/ΔR and Fa/ΔR are the tangential and axial load 
distributions on the blade, ω is the angular velocity, and v0 is the incoming wind velocity ahead of the turbine 
disk. An inter-module optimization is performed by the Control module, which chooses the optimum ω for 
a given point by calling the Aero module successively and performing a line search. The global optimization 
is performed by calling the Wrapper module, and the Aero module performs its own root-finding technique 
to approximate the wind velocity at the turbine disk. 

Inputs 

x, param  x, param  x, param  x, param  x, param  Output 

Wrapper 
cweibull, 
kweibull 

     
PE, Vblades, 

Max(σmax(v0))

Max(σmax(v0)) 
Expected 
Power 

v0  ω, v0 
ω, Ft/ΔR, 
Fa/ΔR 

  ω  Control  ω, v0   

 
Q, P, Ft/ΔR, 

Fa/ΔR 
Q, P, Ft/ΔR, 

Fa/ΔR 
Aero   

  σmax(v0)      Structure 

 

Figure 1: N2 Diagram. 

B. Wrapper Module 

The Wrapper module takes as inputs the design vector and parameters and outputs the expected power, 
blade material volume, and maximum structural stress, thereby serving as the wrapper for the entire function 
evaluation. It transforms the decision variables representing distributions into PCHIP splines, which it then 
evaluates at a given number of points, in order to discretize the blade for analysis. The Wrapper module 
calls the Expected Power module. 

C. Expected Power Module 

As is documented in the literature, wind profiles are commonly approximated by Weibull distributions, with 
data for specific sites available in6 and.2 The Expected Power module discretizes the control curve spline, β, 
evaluates the performance of the turbine at each incoming wind speed by calling the Control module, and 
performs a Simpsons Rule integration over the Weibull distribution on the turbine power output in order to 
derive the expected value. It also calls the Structures module to find the extreme stress value in each blade 
section over all incoming wind speeds. 

D. Control Module 

The Control module optimizes power output for a set of blade geometry decision variables and a given 
control pitch angle by choosing the optimal rotational speed without violating the maximum allowable 
torque, Qmax, constraint on the generator. The algorithm assumes a concave power curve with respect to 
rotational speed, ω, and finds the point of maximum power by fminbnd routine. If that operating 
point exceeds Qmax, the rotational speed is incrementally increased until the operating torque matches 
Qmax by employing  fzero routine. 

E. Aero Module 

The Aero module calculates the turbine torque and power for a given rotational speed, control pitch angle, 
and blade geometry details by iteratively solving for the velocity behind the blade based on the momentum 
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taken out of the blade at the turbine disk. Forces at the turbine disk are calculated by integrating lift and 
drag, calculated by lookup table from the airfoil property curves, over the blade radius. The iteration is 
enhanced by a relaxation factor, which is iteratively lowered to counteract instability. The airfoil lift and 
drag coefficients are taken from a series of wind tunnel tests described in7 and8 and extrapolated to post-stall 
regions by assuming flat plate properties as described in.9 

F. Structure Module 

The Structure module calculates the structural stresses based on the aerodynamic loading and rotational 
speed of the blade. The airfoil section is replaced with an equivalent rectangle with the same area and chord 
length as the airfoil, and the entire blade is treated as a cantilevered beam. The aerodynamic loads acting at 
the quarter chord point at each station are transferred to the center of the rectangular shell with appropriate 
moments. The bending moments and the centripetal force due to the rotation of the beam cause normal 
stresses, which are combined with shear stresses to calculate the maximum stress in the blade section. 

The shell thickness at each station is the decision variable, t. A spar box is also added to the blade 
geometry to stiffen the blade. The breadth of the spar box is quarter of the chord at that section and the 
height is the inner height of the rectangular shell. The box thickness is optimized over the range of 5 to 
20% of the breadth of the box in order to minimize cross-sectional area without exceeding the maximum 
allowable stress. If the thickness is tight at 20% at any section, the maximum allowable stress is violated at 
that section. 

G. Validation 

Unfortunately, we did not have a real wind turbine design to compare our codes with. However, we checked 
the Structure module against analytical results for a rectangular cantilevered beam, and found it to output 
identical values. We attempted to use higher fidelity models such as Qprop and VABS to check our codes 
against, but were unable to make working input files in time. 

IV. Optimization 

Our formulation has both a nonlinear, non-convex objective function and a nonlinear, non-convex feasible 
region. Function evaluations are non-trivial and can range from several seconds to ten minutes, depending on 
the design vector. However, we employ only continuous decision variables, and believe both our objective and 
constraints are smooth functions. Because of the multiple local optima and expensive function evaluations, 
our problem lends itself to design space exploration and the use of multi-start gradient methods. While 
heuristics offer algorithms that can work well to find global optima, they are typically very expensive to run, 
and in practice we found that we never had enough computational resources to fully converge with heuristic 
methods including genetic algorithms and simulated annealing. 

A. Design Space Exploration 

We performed a design space exploration by generating a space-filling Design of Experiments (DOE) using 
the orthogonal array method as described in.10 We chose factors and levels as presented in Table 3 and 
Figure 2. The choice of factors and levels was derived from extensive point-testing of our analysis code and 
common-sense. For example, the levels for Factor 1, corresponding to blade radius, were chosen to fill only 
the upper portion of the allowable range for the blade radius as a larger radius increases the total amount 
of wind energy entering the turbine disk. For other factors that represent distributions, we chose levels to 
either test different distribution shapes, or relative magnitudes. At least one level in each factor was chosen 
to correspond with optimal decision variables from a gradient-based optimization we performed early in our 
project. 

1. DOE Results 

Surprisingly, no DOE test point exceeds the allowable stress. The main effects of each factor are shown 
in Table 4. To avoid using the penalty method on the constraint, we calculated a main effect for both the 
maximum stress and the expected power over blade volume, which can be combined to estimate the objective 
function and maximum stress of any combination of factors. 
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Table 3: DOE Factors and Levels 

Factor Variable Levels Level 1 Level 2 Level 3 Focus 

1 R 3 16.15 14.15 12.15 Magnitude 

2 Qmax 3 12000 16000 20000 Magnitude 

3 t 3 0.004 0.01 0.02 Magnitude 

4 T 3 (0.6, 0.7) (0.1, 0.7) (0.35, 0.7) Shape 

5 F 3 0.25 0.5 0.75 Shape 

6 C 3 (2, 1.4, 0.4) (0.5, 0.35, 1) (1, 0.7, 0.2) Magnitude 

7 β 3 (0.7, 0.5, 0.3) (0.4, 0.4, 0.4) (0.8, 0.7, 0.05) Shape 

8 k 2 3 4 - Magnitude 
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Figure 2: Graphical representation of factor levels for distribution design variables. 

Table 4: DOE Factor Main Effects 

σrPE /Vblades max 

Factor Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 

1 -1286 1438 -152 0.112 0.983 -1.095 

2 -114 865 -751 -0.962 0.685 0.277 

3 3374 -783 -2591 1.895 -0.778 -1.117 

4 4148 -2919 -1229 0.955 -0.183 -0.772 

5 -105 8 96 0.322 0.297 -0.618 

6 -670 1862 -1192 -2.410 3.592 -1.182 

7 251 -2319 2069 0.087 -0.855 0.768 

8 -250 250 - -0.535 0.535 -
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2. Main Effect Extrapolation 

To find the best combination of main effects, without considering two-factor interaction, we chose the factor 
levels that corresponded to the highest main effects for the objective function. This combination yielded the 
levels (2,2,1,1,3,2,3,2), with an expected objective value of PE /Vblades = 20686 W/m3 and a maximum stress 
of σr = 12.22 MPa. Trying this point in our analysis code yielded an objective function value roughly max 
twice as large, PE /Vblades = 44527 W/m3, and a slightly higher maximum stress, which coincided with the 
maximum allowable σr = 14.00 MPa. max 

B. Gradient-based Algorithms 

1. Sequential Quadratic Programming (SQP) 

For a smooth objective function like ours, gradient-based algorithms offer attractive convergence to local 
optima. SQP is based on solving a series of sub-problems designed to minimize a quadratic model of the 
objective subject to linearization of the constraints.11 It mimics Newtons method for constrained problems, 
and for unconstrained problems, it reduces to Newtons method. At each major iteration an approximation 
of the Hessian of the Lagrangian function is done using quasi-Newton updates.12 We implemented SQP with 

 fmincon function. 

2. Scaling 

SQP convergence is highly sensitive to the condition number of the Hessian. The condition number is defined 
as the ratio of the highest Eigenvalue to the lowest Eigenvalue of a matrix. A high condition number squashes 
the level sets of the objective function and can lead to cross-stitching behavior that can stall gradient-based 
algorithms. In order to alleviate this problem, we halt the optimization process when the function value 
does not change between iterations within some tolerance, and scale the design variables. To scale the design 
variables, we estimate the diagonal elements of the Hessian matrix by the standard central difference finite 
difference scheme 

∂2J J(x1, . . . , xi +Δx, . . . , xn) − 2J(x1, . . . , xi, . . . , xn) + J(x1, . . . , xi − Δx, . . . , xn)
Hii = (3)

∂x2 
i 
≈ 

Δx2 

and subsequently apply a scaling factor of Hii 
1/2 

to each design variable before passing it to the SQP algorithm. 
The SQP algorithm is then restarted working with the scaled variables. This process is repeated until the 
condition number of the Hessian at the converged solution is lower than 10. 

3. Multi-start 

Because our objective function and feasible regions are not convex, we have no guarantee of finding the global 
optimum with gradient-based algorithms, which only find local optima. Therefore, we sampled the design 
space by starting the SQP algorithm with multiple start vectors. For simplicity, we used the space-filling 
orthogonal array points generated for the DOE as starting points for SQP. 

4. Convergence 

Figure 3 shows the improvement in objective function values, using the penalty-method objective, over 
successive iterations for the SQP algorithm using several starting points. This plot is intended to show the 
difference in not only convergence rates, but also in solution values for different starting points. In practice, 
we tried more starting points than could be easily displayed. 

V. Optimality and Post-Optimality Analysis 

A. Best Design Vector 

The best single-objective design vector, found by SQP, is 

x = (14.13, 20000, 0.004, 4, π/4, π/4, 0.25, 1.91, 0.79, 0.24, π/4, 0.75, 0.36162). 

The blade shape and performance of this design point is graphically depicted in Figures 4, 5, and 6. 
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Figure 3: Convergence for selected SQP runs. 

B. Post-Optimality Analysis 

1. Tight Constraints 

In our best design point, Qmax, T , k, and βcutin were at their upper bounds, and the blade shell thickness, t, 
was at its lower bound. These tight box constraints make sense because they allow for the biggest generator 
to be fitted, with the most aggressive pitch angles at slow speeds and close to the hub, and the thinnest 
blade shell thickness, which minimizes volume. 

2. Sensitivity Analysis 

Table 5 shows the sensitivity of all three components of the objective function with respect to the design 
variables at the best design, normalized with respect to the best design variable values. As expected, the 
blade volume is independent of the twist angle and pitch control curve. Also, the expected power depends 
mainly on the radius, twist angles, and pitch control curve, which heavily influence the aerodynamic forces. 
Finally, the stresses are mainly dependent on the twist angles, which heavily influence torsional strength. 
The values in Table 5 could be used to estimate the change in the objective function for points close to the 
best design point. 

Table 5: Normalized Jacobian at optimal design vector. 

∂J ∂J ∂J ∂J ∂J ∂J ∂J 
∂R ∂Qmax ∂t ∂k ∂Tmid ∂Ttip ∂Fmid 

J1 = PE 1.510 0.041 0 0.367 0.858 0.2966 -0.007 

J2 = Vblades 1.0000 0 0.8557 0 0 0 0.0024 

J3 = σmax 0.0823 
∂J 

∂Croot 

-0.0161 
∂J 

∂Cmid 

0.0434 
∂J 

∂Ctip 

0.1015 
∂J 

∂βcutin 

0.1661 
∂J 

∂βmean 

0.1856 
∂J 

∂βcutof f 

-0.0005 

J1 = PE -0.122 0.368 0.150 0.067 1.787 0.045 

J2 = Vblades 0.5382 0.5638 0.0486 0 0 0 

J3 = σmax 0.0260 0.0024 -0.0010 -0.0706 0.0791 0.0115 

3. Multi-objective Optimization 

In practice, it may be more valuable to identify trade-offs between multiple objective functions. In our case, 
we decided to find the design trade-offs between the expected power and the cost, where the cost was simply 
a scalar multiple of the blade volume. In this case, we had little luck with gradient-based methods such 
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Figure 4: Best design vector decision variables and outputs. 
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Figure 5: Best design vector performance diagram. 
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as weighted-sum and normal boundary intersection methods, and turned to the Multi-Objective Genetic 
Algorithm (MOGA) heuristic method, as implemented in  Optimization Toolbox. The resulting 
Pareto front is shown in Figure 7, with the best point from SQP shown as a circle on the plot. 
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Figure 7: Pareto front for cost and expected power output. 

In Figure 7, the utopia point is located in the bottom right hand corner, at the maximum power output 
and minimum cost. Clearly, the SQP result is much better than the MOGA Pareto front. Unfortunately, we 
were unable to solve our implementation issues with the weighted-sum SQP approach, or to run the MOGA 
long enough to find the true Pareto front during the term. If the shape of the Pareto front happens to hold 
when expanded to the actual front, the marginal cost to increase power appears to be linear at low power 
levels, with a steep increase in cost at higher power levels. 

VI. Conclusions and Future Work 

Our work shows promising results from the DOE and SQP runs with a final design that achieves over 
60% of the Betz limit for power output for most of the incoming wind distribution. In the future, we would 
like to extend the analysis to include more decision variables in the input distributions, extend the code 
to use higher fidelity analysis codes such as VABS for the structures and Qprop for the aerodynamics, and 
thoroughly validate our codes. Finally, we would like to use a more powerful optimization package, such as 
DAKOTA to perform the global optimization. 
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