
1 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Post-Optimality Analysis

Lecture 16

Olivier de Weck

Karen Willcox

Multidisciplinary System 

Design Optimization (MSDO)



2 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Today’s Topics

• Optimality Conditions & Termination

– Gradient-based techniques

– Heuristic techniques

• Objective Function Behavior

• Scaling 
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Standard Problem Definition 
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For now, we consider a single objective function, J(x).

There are n design variables, and a total of m

constraints (m=m1+m2).

The bounds are known as side constraints.
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Karush-Kuhn-Tucker Conditions

If x* is optimum, these conditions are satisfied:

1. x* is feasible

2. j gj(x*) = 0,  j=1,..,m1 and j 0

3. 

The KKT conditions are necessary and sufficient if the 

design space is convex.
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Karush-Kuhn-Tucker Conditions: 

Interpretation

Condition 1: the optimal design satisfies the constraints

Condition 2: if a constraint is not precisely satisfied, then 

the corresponding Lagrange multiplier is zero

– the jth Lagrange multiplier represents the sensitivity of the 

objective function to the jth constraint

– can be thought of as representing the “tightness” of the 

constraint

– if j is large, then constraint j is important for this solution

Condition 3: the gradient of the Lagrangian vanishes at 

the optimum
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Optimization for Engineering 

Problems

• Most engineering problems have a complicated design 

space, usually with several local optima

• Gradient-based methods can have trouble converging to the 

global optimum, and sometimes fail to find even a local 

optimum

• Heuristic techniques offer no guarantee of optimality, neither 

global nor local

• Your post-optimality analysis should address the question:

– How confident are you that you have found the global 

optimum?

– Do you actually care?
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Optimization for Engineering 

Problems
• Usually cannot guarantee that absolute optimum is found

– local optima

– numerical ill-conditioning

 gradient-based techniques should be started from 

several initial solutions

 best solution from a heuristic technique should be 

checked with KKT conditions or used as an initial 

condition for a gradient-based algorithm

• Can determine mathematically if have relative minimum but 

KKT conditions are only sufficient if the problem is convex

• It is very important to interrogate the “optimum” solution
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Termination Criteria: Gradient-Based

Gradient-based algorithm is terminated when ...

an acceptable solution is found

OR

algorithm terminates unsuccessfully

Need to decide:

• when an acceptable solution is found

• when to stop the algorithm with no acceptable 

solution

– when progress is unreasonably slow

– when a specified amount of resources have 

been used (time, number of iterations, etc.)

– when an acceptable solution does not exist

– when the iterative process is cycling
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Termination Criteria: Gradient-Based

• Is xk an acceptable solution?

does xk almost satisfy the conditions for optimality?

has the sequence { xk } converged?

• Often the first question is difficult to test

• The tests are often approximate

• Often rely on the answer to the second question

• But convergence to a non-optimal solution or extended 

lack of progress can look the same as convergence to 

the correct solution!

• No one set of termination criteria is suitable for all 

optimization problems and all methods
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Termination Criteria: Gradient-Based

Has the sequence { xk } converged?

*kJ J *kx xIdeally: or

1k kJ J 1k kx xIn practice: or

Also should check constraint satisfaction:
kg
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Termination Criteria: Heuristics

Typical 

Results

generation

Converged too

fast (mutation rate

too small?)

- GEN = max(GEN): maximum # of generations reached

- Stagnation in Fitness, no progress made on objective

- Dominant Schema have emerged

GA Termination

global

optimum

(unknown)
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Termination Criteria: Heuristics

• Simulated Annealing - cooling schedule: T(k)=f(k, To)

To

0

Search stops when

T(k)< where >0,

but small

• Tabu search termination

• Usually after a predefined number of iterations

• Best solution found is reported

• No guarantee of optimality

search broadly search locally
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Post-Optimality Analysis

• Already talked about sensitivity analysis (Lecture 9)

– How does optimal solution change as a 
parameter is varied?

– How does optimal solution change as a design 
variable value is varied?

– How does optimal solution change as constraints 
are varied?

• Also would like to understand key drivers in optimal 
design

• We also saw in Lecture 9 that the values of the 
Lagrange multipliers at the optimal solution give 
information on how modifying the constraints affects 
the solution.
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Objective Function Behavior

Consider the quadratic function:
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The behavior of (x) in the neighborhood of a local 

minimum is determined by the eigenvalues of H.

1
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

2

T Tx p c x p x p H x p

21 1
ˆ ˆ ˆ ˆ ˆ

2 2 2 2

T T T T T Tc x x Hx c p p Hp x Hp p Hx

21
ˆ ˆ ˆ( ) ( ) ( )

2

T Tx p x p Hx c p Hp



15 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Objective Function Behavior
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Consider the neighborhood of the optimal solution:

ˆ *x x

( *) * 0x Hx c *Hx cor
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The behavior of in the neighborhood 

of x* is determined by H.
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Objective Function Behavior

Let vj, j be the jth eigenvector and eigenvalue of H:

and since H is symmetric.
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As we move away from x* along the direction vj, the 

change in  the objective depends on the sign of j.

Consider the case when p=vj:
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Objective Function Behavior

21
( * ) *)

2
j jx v x

• If j>0, increases

• If j<0, decreases

• If j=0, remains constant

• When all j>0, x* is a minimum of 

• The contours of are ellipsoids

– principal axes in directions of eigenvectors

– lengths of principal axes inversely proportional to 

square roots of eigenvalues
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Objective Function Behavior

v1

v2

contours of constant 

direction of first 

eigenvector

• If 2= 1, the contours are circular

• As 2/ 1 gets very small, the ellipsoids get more and more stretched

• If any eigenvalue is very close to zero, will change very little when 

moving along that eigenvector

direction of second 

eigenvector

(x)

x
1

x
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Hessian Condition Number

• The condition number of the Hessian is given by

• When (H)=1, the objective function contours are circular

• As (H) increases, the contours become elongated

• If (H)>>1, the change in the objective function due to a 

small change in x will vary radically depending on the 

direction of perturbation

• (H) can be computed via a Cholesky factorization 

(H=LDLT)

n

Η
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Scaling

• In theory we should be able to choose any scaling of 

the design variables, constraints and objective 

functions without affecting the solution

• In practice, the scaling can have a large effect on the 

solution

numerical accuracy, numerical conditioning

• From Papalambros, p. 352: “scaling is the single 

most important, but simplest, reason that can make 

the difference between success and failure of a 

design optimization algorithm”
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Scaling
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MATLAB Demo: Scaling
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Design Variable Scaling

• In aircraft design, we are combining variables of very 

different magnitudes

• e.g. aircraft range ~ 106 m

wing span ~ 101 m

skin thickness ~ 10-3 m

• Need to non-dimensionalize and scale variables to 

be of similar magnitude in the region of interest

• Want each variable to be of similar weight during the 

optimization
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Design Variable Scaling

• Consider the transformation x = Ly, where L is an arbitrary 

nonsingular transformation matrix

• If at any iteration in the algorithm, xk = Lyk (using exact 

arithmetic), then the algorithm is said to be scale invariant

• In practice, this property will not hold

• The conditioning of the Hessian matrix at x* gives us 

information about the scaling of the design variables

• When H(x) is ill-conditioned, J(x) varies much more rapidly 

along some directions than along others

• The ill-conditioning of the Hessian is a form of bad scaling, 

since similar changes in ||x|| do not cause similar changes 

in J
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Design Variable Scaling

• We saw that if H(x*) is ill-conditioned ( (H)>>1), then the 

change in the objective function due to a small change in x

will vary radically depending on the direction of perturbation

• J(x) may vary so slowly along an eigenvector associated with 

a near-zero eigenvalue that changes that should be 

significant are lost in rounding error

• We would like to scale our design variables so that (H)~1

• In practice this may be unachievable (often we don’t know H)

• Often, a diagonal scaling is used where we consider only the 

diagonal elements of H(x0) and try to make them close to 

unity
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Objective Function Scaling

• In theory, we can multiply J(x) by any constant or add 

a constant term, and not affect the solution

• In practice, it is generally desirable to have J~O(1) in 

the region of interest

• Algorithms can have difficulties if J(x) is very small 

everywhere, since convergence is usually tested using 

some small quantity

• Inclusion of a constant term can also cause difficulties, 

since the error associated with the sum may reflect the 

size of the constant rather than the size of J(x)

e.g.  min x1
2+x2

2   vs.  min x1
2+x2

2 +1000
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Constraint Scaling

A well scaled set of constraints has two properties:

– each constraint is well conditioned with respect 

to perturbations in the design variables

– the constraints are balanced with respect to 

each other, i.e. all constraints have an equal 

weighting in the optimization

The scaling of constraints can have a major effect on the 

path chosen by the optimizer. For example, many 

algorithms maintain a set of active constraints and from 

one iteration to the next they interchange one active and 

one inactive constraint. Constraint scaling impacts the 

selection of which constraint to add or delete.



28 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Scaling

Two reasons to scale:

1. At the beginning of optimization, using x0, to 

improve algorithm performance (e.g. decrease 

number of iterations). 

2. At the end of optimization, using x*, to make 

sure that the “optimal” solution is indeed the 

best we can achieve.

BWB example



29 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Scaling Example

• Consider optimization of the BWB

• Rather than optimizing just a single aircraft, we want to 

design a family of aircraft

• This family has commonality – the planes share 

common parts, planforms and systems

• Commonality can help to reduce costs

e.g. manufacturing costs

design costs

spare parts

crew training

• But will require a trade with performance

• It is easier to achieve commonality with the BWB than 

with conventional tube & wing aircraft

centerbody

inner wing

outer wing

winglet
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Scaling Example

• Consider a two-aircraft family with common wings:

• We set up an MDO framework for each aircraft 

• We link the variables that are common between the two 

aircraft

BWB 3-250

272 passengers, 8550 nm

BWB 3-450

475 passengers, 8550 nm

common

different
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Scaling Example

0.99

1.00

1.01

1.02

1.03

0 20 40 60 80 100

Iteration number

Plane 1

Plane 2 

• In order to test the framework, we first try to optimize a 

family with no commonality

• We should get the point-design solutions for each plane

• However, the algorithm (SQP) does not converge to the 

correct solution for the smaller plane!

MTOW

Point-Design 

MTOW

MTOW results 

for last 100 

iterations
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Scaling Example
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Plane 1

Plane 2 (scaled)

Plane 2 
(unscaled)

• When we look at the Hessian matrix at the solution, 

we see that the diagonal entries corresponding to the 

design variables of Plane 2 are badly scaled

• We rescale these variables, and now the algorithm 

converges

Iteration number

MTOW

Point-Design 

MTOW

MTOW results 

for last 100 

iterations

~4000 kg
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Lecture Summary

• Optimality Conditions

• Objective Function Behavior

• Scaling

• In practice, optimization can be very difficult to implement: 

algorithms can behave badly, and it can be difficult 

(impossible) to verify that a solution is truly optimal

• Numerical accuracy is a real issue and can drastically 

affect results, especially if the problem is not well scaled 

• It is very important to interrogate the “optimum” solution 

carefully

• The mathematical tools you learn are very useful in 

practice, but they must be applied carefully!
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