Multidisciplinary System Design Optimization (MSDO)

Gradient Calculation and Sensitivity Analysis

Lecture 9

Olivier de Weck Karen Willcox

Today's Topics

- Gradient calculation methods
- Analytic and Symbolic
- Finite difference
- Complex step
- Adjoint method
- Automatic differentiation
- Post-Processing Sensitivity Analysis
- effect of changing design variables
- effect of changing parameters
- effect of changing constraints
"How does the function J value change locally as we change elements of the design vector \mathbf{x} ?"

Compute partial derivatives
of J with respect to $x_{i}$$\quad \frac{\partial J}{\partial x_{\mathrm{i}}}$

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

M| lesul Geometry of Gradient vector (2D)

Example function:
 $$
J \quad x_{1}, x_{2}=x_{1}+x_{2}+\frac{1}{x_{1} \cdot x_{2}}
$$

M|lesul Geometry of Gradient vector (3D)
Example $\quad J=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$
increasing

Gradient vector points to larger values of J

Other Gradient-Related Quantities

- Jacobian: Matrix of derivatives of multiple functions w.r.t. vector of variables

$$
\begin{aligned}
\mathbf{J}=\left[\begin{array}{c}
J_{1} \\
J_{2} \\
\vdots \\
J_{z}
\end{array}\right] \quad \square & \square \mathbf{J}=\left[\begin{array}{cccc}
\frac{\partial J_{1}}{\partial x_{1}} \frac{\partial J_{2}}{\partial x_{1}} & \cdots & \frac{\partial J_{z}}{\partial x_{1}} \\
\frac{\partial I_{1}}{\partial x_{2}} \frac{\partial J_{2}}{\partial x_{2}} & \cdots & \frac{\partial \partial_{z}}{\partial x_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial J_{1}}{\partial x_{n}} \frac{\partial J_{2}}{\partial x_{n}} & \cdots & \frac{\partial J_{z}}{\partial x_{n}}
\end{array}\right] \\
& n \times 1 \times z=1
\end{aligned}
$$

- Hessian: Matrix of second-order derivatives

$$
\mathbf{H}=\nabla^{2} J=\left[\begin{array}{cccc}
\frac{\partial^{2} J}{\partial x_{1}^{2}} & \frac{\partial^{2} J}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} J}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} J}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} J}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} J}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} J}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} J}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} J}{\partial x_{n}^{2}}
\end{array}\right] \quad n \times n
$$

Why Calculate Gradients

- Required by gradient-based optimization algorithms
- Normally need gradient of objective function and each constraint w.r.t. design variables at each iteration
- Newton methods require Hessians as well
- Isoperformance/goal programming
- Robust design
- Post-processing sensitivity analysis
- determine if result is optimal
- sensitivity to parameters, constraint values

Analytical Sensitivities

If the objective function is known in closed form, we can often compute the gradient vector(s) in closed form (analytically):

$$
\begin{aligned}
& \text { Example: } J \quad x_{1}, x_{2}=x_{1}+x_{2}+\frac{1}{x_{1} \cdot x_{2}} \\
& \text { Analytical Gradient: } \nabla J=\left[\begin{array}{l}
\frac{\partial J}{\partial x_{1}} \\
\frac{\partial J}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{c}
1-\frac{1}{x_{1}^{2} x_{2}} \\
1-\frac{1}{x_{1} x_{2}^{2}}
\end{array}\right] \\
& \text { Example } \\
& x_{1}=x_{2}=1 \\
& J(1,1)=3 \\
& \nabla J(1,1)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { Minimum }
\end{aligned}
$$

For complex systems analytical gradients are rarely available

- Use symbolic mathematics programs
- e.g. MATLAB®, Maple ${ }^{\circledR}$, Mathematica ${ }^{\circledR}$
construct a symbolic object
" syms x1 x2
» $J=x 1+x 2+1 /\left(x 1^{*} x 2\right)$;
" $d J d x 1=\operatorname{diff}(\mathrm{J}, \mathrm{x} 1)$
dJdx1 =1-1/x1^2/x2
" dJdx2=diff(J,x2)
$d J d x 2=1-1 / x 1 / x 2^{\wedge} 2 \quad$ difference operator

Function of a single variable $f(x)$

- First-order finite difference approximation of gradient:

$$
f^{\prime} x_{o}=\underbrace{\frac{f x_{o}+\Delta x-f x_{o}}{\Delta x}}_{\begin{array}{c}
\text { Forward difference } \\
\text { approximation to } \\
\text { the derivative }
\end{array}}+\underbrace{0 \Delta x}_{\text {Truncation Error }}
$$

- Second-order finite difference
 approximation of gradient:

Finite Differences (II)

Approximations are derived from Taylor Series expansion:
$f x_{o}+\Delta x=f x_{o}+\Delta x f^{\prime} x_{o}+\frac{\Delta x^{2}}{2} f^{\prime \prime} x_{o}+O \Delta x^{3}$
Neglect second order and higher order terms; solve for gradient vector:
$f^{\prime} x_{o}=\underbrace{\frac{f x_{o}+\Delta x-f x_{o}}{\Delta x}}+\underbrace{O \Delta x} \quad$ Truncation Error
Forward Difference

$$
\begin{array}{ll}
\longrightarrow & O \Delta x=\frac{\Delta x}{2} f^{\prime \prime} \zeta \\
& x_{o} \leq \zeta \leq x_{o}+\Delta x
\end{array}
$$

Finite Differences (III)

Take Taylor expansion backwards at $x_{o}-\Delta x$

$$
\begin{align*}
& f x_{o}+\Delta x=f x_{o}+\Delta x f^{\prime} x_{o}+\frac{\Delta x^{2}}{2} f^{\prime \prime} x_{o}+O \Delta x^{2} \tag{1}\\
& f x_{o}-\Delta x=f x_{o}-\Delta x f^{\prime} x_{o}+\frac{\Delta x^{2}}{2} f^{\prime \prime} x_{o}+O \Delta x^{2} \tag{2}
\end{align*}
$$

(1) - (2) and solve again for derivative

$$
\begin{array}{r}
f^{\prime} x_{o}=\underbrace{\frac{f x_{o}+\Delta x-f x_{o}-\Delta x}{2 \Delta x}}_{\text {Central Difference }}+\underbrace{O \Delta x^{2}}_{\square} \text { Truncation Error } \\
O \Delta x^{2}=\frac{\Delta x^{2}}{6} f^{\prime \prime \prime} \quad \zeta \\
x_{o} \leq \zeta \leq x_{o}+\Delta x
\end{array}
$$

Finite Differences (IV)

$$
\begin{aligned}
& \frac{\partial J}{\partial x_{1}} \approx \frac{J x_{1}^{1}-J x_{1}^{o}}{x_{1}^{1}-x_{1}^{o}}=\frac{J x_{1}^{o}+\Delta x_{1}-J \quad x_{1}^{o}}{\Delta x_{1}}=\frac{\Delta J}{\Delta x_{1}} \\
& \Delta J \begin{cases}J & x_{1}^{1} \\
J & x_{1}^{o} \\
\text { finite difference }\end{cases} \\
& \text { approximation } \\
& \text { true, analytical } \\
& \text { sensitivity }
\end{aligned}
$$

Finite Differences (V)

- Second-order finite difference approximation of second derivative:

$$
f^{\prime \prime}\left(x_{o}\right) \approx \frac{f x_{o}+\Delta x-2 f x_{o}+f x_{o}-\Delta x}{\Delta x^{2}}
$$

Errors of Finite Differencing

Caution: - Finite differencing always has errors

- Very dependent on perturbation size

\Rightarrow Choice of Δx is critical

$$
\begin{aligned}
& x_{1}=x_{2}=1 \\
& J(1,1)=3
\end{aligned} \quad \nabla J(1,1)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Perturbation Step Size $\Delta \mathrm{x}_{1}$

Perturbation Size Δx Choice

- Error Analysis

$$
\begin{array}{ll}
\Delta x \cong \varepsilon_{A} /|f|^{1 / 2} & \text { - Forward difference } \\
\Delta x \cong \varepsilon_{A} /|f|^{1 / 3} & \text { - Central difference }
\end{array}
$$

- Machine Precision (Gill et al. 1981)

Step size at k-th iteration

$$
\Delta x_{k} \cong x_{k} \cdot 10^{-q}
$$

$q-\#$ of digits of machine
Precision for real numbers

- Trial and Error - typical value ~ 0.1-1\%

$F J_{i}$
 Cost of a single objective function evaluation of J_{i}

Cost of gradient vector one-sided finite difference approximation for J_{i} for a design vector of length n

Cost of Jacobian finite difference approximation with z objective functions

Example: 6 objectives
30 design variables
1 sec per function evaluation

3 min of CPU time for a single Jacobian estimate - expensive!

- Similar to finite differences, but uses an imaginary step

$$
f^{\prime}\left(x_{0}\right) \approx \frac{\operatorname{Im}\left[f\left(x_{0}+i \Delta x\right)\right]}{\Delta x}
$$

- Second order accurate
- Can use very small step sizes e.g. $\Delta x \approx 10^{-20}$
- Doesn't have rounding error, since it doesn't perform subtraction
- Limited application areas
- Code must be able to handle complex step values
J.R.R.A. Martins, I.M. Kroo and J.J. Alonso, An automated method for sensitivity analysis using complex variables, AIAA Paper 2000-0689, Jan 2000

Automatic Differentiation

- Mathematical formulae are built from a finite set of basic functions, e.g. additions, $\sin x$, exp x, etc.
- Using chain rule, differentiate analysis code: add statements that generate derivatives of the basic functions
- Tracks numerical values of derivatives, does not track symbolically as discussed before
- Outputs modified program = original + derivative capability
- e.g., ADIFOR (FORTRAN), TAPENADE (C, FORTRAN), TOMLAB (MATLAB), many more...
- Resources at http://www.autodiff.org/

Adjoint Methods

Consider the following problem:

$$
\begin{array}{ll}
\text { Minimize } & J(\mathbf{x}, \mathbf{u}) \\
\text { s.t. } & \mathbf{R}(\mathbf{x}, \mathbf{u})=\mathbf{0}
\end{array}
$$

where \mathbf{x} are the design variables and \mathbf{u} are the state variables.
The constraints represent the state equation.
e.g. wing design: \mathbf{x} are shape variables, \mathbf{u} are flow variables,
$\mathbf{R}(\mathbf{x}, \mathbf{u})=0$ represents the Navier Stokes equations.

We need to compute the gradients of J wrt \mathbf{x} :

$$
\frac{\mathrm{d} J}{\mathrm{~d} \mathbf{x}}=\frac{\partial J}{\partial \mathbf{x}}+\frac{\partial J}{\partial \mathbf{u}} \frac{\mathrm{~d} \mathbf{u}}{\mathrm{~d} \mathbf{x}}
$$

Typically the dimension of \mathbf{u} is very high (thousands/millions).

Adjoint Methods

$$
\frac{\mathrm{d} J}{\mathrm{~d} \mathbf{x}}=\frac{\partial J}{\partial \mathbf{x}}+\frac{\partial J}{\partial \mathbf{u}} \frac{\mathrm{du}}{\mathrm{~d} \mathbf{x}}
$$

- To compute du/dx, differentiate the state equation:

$$
\begin{aligned}
\frac{\mathrm{d} \mathbf{R}}{\mathrm{dx}}=\frac{\partial \mathbf{R}}{\partial \mathbf{x}}+\frac{\partial \mathbf{R}}{\partial \mathbf{u}} \frac{\mathrm{du}}{\mathrm{~d} \mathbf{x}} & =\mathbf{0} \\
\frac{\partial \mathbf{R}}{\partial \mathbf{u}} \frac{\mathrm{du}}{\mathrm{dx}} & =-\frac{\partial \mathbf{R}}{\partial \mathbf{x}}
\end{aligned}
$$

$$
\frac{\mathrm{du}}{\mathrm{dx}}=-\left(\frac{\partial \mathbf{R}}{\partial \mathbf{u}}\right)^{-1} \frac{\partial \mathbf{R}}{\partial \mathbf{x}}
$$

Adjoint Methods

- We have

$$
\begin{gathered}
\frac{\mathrm{d} J}{\mathrm{~d} \mathbf{x}}=\frac{\partial J}{\partial \mathbf{x}}+\frac{\partial J}{\partial \mathbf{u}} \frac{\mathrm{~d} \mathbf{u}}{\mathrm{~d} \mathbf{x}}=\frac{\partial J}{\partial \mathbf{x}}-\underbrace{\frac{\partial J}{\partial \mathbf{u}}\left(\frac{\partial \mathbf{R}}{\partial \mathbf{u}}\right)^{-1}}_{\lambda^{T}} \frac{\partial \mathbf{R}}{\partial \mathbf{x}} \\
\boldsymbol{\lambda}=\left[\frac{\partial J}{\partial \mathbf{u}}\left(\frac{\partial \mathbf{R}}{\partial \mathbf{u}}\right)^{-1}\right]^{T}
\end{gathered}
$$

- Now define
- Then to determine the gradient:

First solve $\left(\frac{\partial \mathbf{R}}{\partial \mathbf{u}}\right)^{T} \lambda=\left(\frac{\partial J}{\partial \mathbf{u}}\right)^{T}$ (adjoint equation)
Then compute $\frac{\mathrm{d} J}{\mathrm{~d} \mathbf{x}}=\frac{\partial J}{\partial \mathbf{x}}-\lambda^{T} \frac{\partial \mathbf{R}}{\partial \mathbf{x}}$

Adjoint Methods

- Solving adjoint equation

$$
\left(\frac{\partial \mathbf{R}}{\partial \mathbf{u}}\right)^{T} \lambda=\left(\frac{\partial J}{\partial \mathbf{u}}\right)^{T}
$$

about same cost as solving forward problem (function evaluation)

- Adjoints widely used in aerodynamic shape optimization, optimal flow control, geophysics applications, etc.
- Some automatic differentiation tools have 'reverse mode' for computing adjoints

Mlessu Post-Processing Sensitivity Analysis ${ }^{168588}$

- A sensitivity analysis is an important component of post-processing
- Key to understanding which design variables, constraints, and parameters are important drivers for the optimum solution
- How sensitive is the "optimal" solution $J *$ to changes or perturbations of the design variables x^{*} ?
- How sensitive is the "optimal" solution x^{*} to changes in the constraints $g(x), \boldsymbol{h}(\boldsymbol{x})$ and fixed parameters p ?

Sensitivity Analysis: Aircraft

Questions for aircraft design:

How does my solution change if I

- change the cruise altitude?
- change the cruise speed?
- change the range?
- change material properties?
- relax the constraint on payload?
- ...

Questions for spacecraft design:

How does my solution change if I

- change the orbital altitude?
- change the transmission frequency?
- change the specific impulse of the propellant?
- change launch vehicle?
- Change desired mission lifetime?
- ...
"How does the optimal solution change as we change the problem parameters?"

effect on design variables
effect on objective function
effect on constraints
Want to answer this question without having to solve the optimization problem again.

In order to compare sensitivities from different design variables in terms of their relative sensitivity it may be necessary to normalize:
$\left.\frac{\partial J}{\partial x_{i}}\right|_{\mathbf{x}^{0}} \begin{aligned} & \text { "raw" - unnormalized sensitivity }=\text { partial } \\ & \text { derivative evaluated at point } \mathrm{x}_{\mathrm{i}, \mathrm{o}}\end{aligned}$
$\frac{\Delta J / J}{\Delta x_{i} / x_{i}}=\left.\frac{x_{i, o}}{J\left(\mathbf{x}^{\mathbf{0}}\right)} \cdot \frac{\partial J}{\partial x_{i}}\right|_{\mathbf{x}^{\mathbf{o}}}$
Normalized sensitivity captures relative sensitivity
~ \% change in objective per \% change in design variable

Important for comparing effect between design variables

M|esd Example: Dairy Farm Problem

Dairy Farm Sensitivity

- Compute objective at $\mathbf{x}^{0} \quad J\left(\mathbf{x}^{o}\right)=13092$
- Then compute raw sensitivities
$=\left[\begin{array}{l}\frac{\partial P}{\partial L} \\ \frac{\partial P}{\partial N} \\ \frac{\partial P}{\partial R}\end{array}\right]=\left[\begin{array}{c}36.6 \\ 2225.4 \\ 588.4\end{array}\right]$
Normalized Sensitivities
- Show graphically with tornado chart

NASA Nexus Spacecraft Concept

$J_{2}=$ Centroid Jitter on Focal Plane [RSS LOS]

Simulation " J "-domain What are the design variables that are "drivers" of system performance?

Graphical Representation

32

Graphical Representation of Jacobian evaluated at design x^{0}, normalized for comparison.

$$
\bar{\nabla} J=\frac{\mathbf{x}^{0}}{J_{o}}\left[\begin{array}{cc}
\frac{\partial J_{1}}{\partial R_{u}} & \frac{\partial J_{2}}{\partial R_{u}} \\
\cdots & \cdots \\
\frac{\partial J_{1}}{\partial K_{c f}} & \frac{\partial J_{2}}{\partial K_{c f}}
\end{array}\right]
$$

J1: RMMS WFE most sensitive to:

Ru - upper wheel speed limit [RPM]
Sst - star tracker noise 1σ [asec] K_rISO - isolator joint stiffness [$\mathrm{Nm} / \mathrm{rad}$] K_zpet - deploy petal stiffness [N / m]

J2: RSS LOS most sensitive to:

Ud - dynamic wheel imbalance [gcm^{2}] K_rISO - isolator joint stiffness [$\mathrm{Nm} / \mathrm{rad}$] zeta - proportional damping ratio [-] Mgs - guide star magnitude [mag] Kcf - FSM controller gain [-]

Parameters p are the fixed assumptions. How sensitive is the optimal solution x^{*} with respect to fixed parameters?

Optimal solution:

Example:

$$
x^{*}=[R=106.1 \mathrm{~m}, \mathrm{~L}=0 \mathrm{~m}, \mathrm{~N}=17 \mathrm{cows}]^{\top}
$$

"Dairy Farm" sample problem

Maximize Profit

Sensitivity Analysis

KKT conditions: $\quad \nabla J\left(\mathbf{x}^{*}\right)+\sum_{j \in M} \lambda_{j} \nabla \hat{g}_{j}\left(\mathbf{x}^{*}\right)=0$

$\hat{g}_{j}\left(\mathbf{x}^{*}\right)=0, \quad j \in M \Longleftarrow$| Set of |
| :--- |
| active |
| constr | $\lambda_{j}>0, \quad j \in M$ constraints

For a small change in a parameter, p, we require that the KKT conditions remain valid:

$$
d p
$$

Rewrite first equation:

$$
\frac{\partial J}{\partial x_{i}}\left(\mathbf{x}^{*}\right)+\sum_{j \in M} \lambda_{j} \frac{\partial \hat{g}_{j}}{\partial x_{i}}\left(\mathbf{x}^{*}\right)=0, \quad i=1, \ldots, n
$$

Sensitivity Analysis

Recall chain rule. If: $Y=Y(p, \mathbf{x}(p))$ then

$$
\frac{d Y}{d p}=\frac{\partial Y}{\partial p}+\sum_{k=1}^{n} \frac{\partial Y}{\partial x_{i}} \frac{\partial x_{i}}{\partial p}
$$

Applying to first equation of KKT conditions:

$$
\begin{aligned}
& \frac{d}{d p}\left(\frac{\partial J(\mathbf{x}, p)}{\partial x_{i}}+\sum_{j \in M} \lambda_{j}(p) \frac{\partial \hat{g}_{j}(\mathbf{x}, p)}{\partial x_{i}}\right) \\
& =\frac{\partial^{2} J}{\partial x_{i} \partial p}+\sum_{j \in M} \lambda_{j} \frac{\partial^{2} J}{\partial x_{i} \partial p}+\sum_{k=1}^{n}\left(\frac{\partial^{2} g}{\partial x_{i} \partial x_{k}}+\sum_{j \in M} \lambda_{j} \frac{\partial^{2} \hat{g}_{j}}{\partial x_{i} \partial x_{k}}\right) \frac{\partial x_{k}}{\partial p}+\sum_{j \in M} \frac{\partial \lambda_{j}}{\partial p} \frac{\partial \hat{g}_{j}}{\partial x_{i}}=0 \\
& \sum_{k=1}^{n} A_{i k} \frac{\partial x_{k}}{\partial p}+\sum_{j \in M} B_{i j} \frac{\partial \lambda_{j}}{\partial p}+c_{i}=0
\end{aligned}
$$

Sensitivity Analysis

Perform same procedure on equation: $g_{j}\left(x^{*}, p\right)=0$

$$
\begin{aligned}
& \frac{\partial \hat{g}_{j}}{\partial p}+\sum_{k=1}^{n} \frac{\partial \hat{g}_{j}}{\partial x_{k}} \frac{\partial x_{k}}{\partial p}=0 \\
& \sum_{k=1}^{n} B_{k j} \frac{\partial x_{k}}{\partial p}+d_{j}=0
\end{aligned}
$$

Sensitivity Analysis

In matrix form we can write:

$$
\begin{aligned}
& \left.\begin{array}{r}
n \downarrow \\
M \downarrow
\end{array} \stackrel{n}{\stackrel{n}{A}} \begin{array}{l}
B \\
B^{T}
\end{array}\right]\left\{\begin{array}{l}
\delta \mathbf{x} \\
\delta \boldsymbol{\lambda}
\end{array}\right\}+\left\{\begin{array}{l}
c \\
d
\end{array}\right\}=0 \\
& A_{i k}=\frac{\partial^{2} J}{\partial x_{j} \partial x_{k}}+\sum_{j \in M} \lambda_{j} \frac{\partial^{2} \hat{g}_{j}}{\partial x_{i} \partial x_{k}} \\
& B_{i j}=\frac{\partial \hat{g}_{j}}{\partial x_{i}} \\
& c_{i}=\frac{\partial^{2} J}{\partial x_{i} \partial p}+\sum_{j \in M} \lambda_{j} \frac{\partial^{2} \hat{g}_{j}}{\partial x_{i} \partial p} \\
& \underset{37}{d_{j}}=\frac{\partial \hat{g}_{j}}{\partial p}
\end{aligned}
$$

Sensitivity Analysis

We solve the system to find $\delta \mathbf{x}$ and $\delta \lambda$, then the sensitivity of the objective function with respect to p can be found:

$$
\frac{d J}{d p}=\frac{\partial J}{\partial p}+\nabla J^{T} \delta \mathbf{x}
$$

$$
\Delta J \approx \frac{d J}{d p} \Delta p
$$

(first-order approximation)

$\Delta \mathbf{x} \approx \delta \mathbf{x} \Delta p$

To assess the effect of changing a different parameter, we only need to calculate a new RHS in the matrix system.

- We also need to assess when an active constraint will become inactive and vice versa
- An active constraint will become inactive when its Lagrange multiplier goes to zero:

$$
\Delta \lambda_{j}=\frac{\partial \lambda_{j}}{\partial p} \Delta p=\delta \lambda_{j} \Delta p
$$

Find the Δp that makes λ_{j} zero:

$$
\begin{gathered}
\lambda_{j}+\delta \lambda_{j} \Delta p=0 \\
\Delta p=\frac{-\lambda_{j}}{\delta \lambda_{j}} \quad j \in M
\end{gathered}
$$

This is the amount by which we can change p before the $j^{\text {th }}$ constraint becomes inactive (to a first order approximation)

Mlesd Sensitivity Analysis - Constraints
An inactive constraint will become active when $g_{j}(\mathbf{x})$ goes to zero:

$$
g_{j}(\mathbf{x})=g_{j}\left(\mathbf{x}^{*}\right)+\Delta p\left[\nabla g_{j}\left(\mathbf{x}^{*}\right)^{\top} \delta \mathbf{x}\right]=0
$$

Find the Δp that makes g_{j} zero:

$$
\Delta p=\frac{-g_{j}\left(\mathbf{x}^{*}\right)}{\nabla g_{j}\left(\mathbf{x}^{*}\right)^{T} \delta \mathbf{x}}
$$

for all j not active at \mathbf{x}^{*}

- This is the amount by which we can change p before the $j^{\text {th }}$ constraint becomes active (to a first order approximation)
- If we want to change p by a larger amount, then the problem must be solved again including the new constraint
${ }_{40}$ Only valid close to the optimum
- Consider the problem:
minimize $J(\mathbf{x})$ s.t. $\mathbf{h}(\mathbf{x})=0$
with optimal solution \mathbf{x}^{\star}
- What happens if we change constraint k by a small amount?

$$
h_{k}\left(\mathbf{x}^{*}\right)=\varepsilon \quad h_{j}\left(\mathbf{x}^{*}\right)=0, \quad \forall j \neq k
$$

- Differentiating w.r.t ε

$$
\nabla h_{k} \frac{d \mathbf{x}^{*}}{d \varepsilon}=1 \quad \nabla h_{j} \frac{d \mathbf{x}^{*}}{d \varepsilon}=0, \quad \forall j \neq k
$$

Lagrange Multiplier Interpretation

- How does the objective function change?

$$
\frac{d J}{d \varepsilon}=\nabla J \frac{d \mathbf{x}^{*}}{d \varepsilon}
$$

- Using KKT conditions:

$$
\frac{d J}{d \varepsilon}=\left(-\sum_{j} \lambda_{j} \nabla h_{j}\right) \frac{d \mathbf{x}^{*}}{d \varepsilon}=-\sum_{j} \lambda_{j} \nabla h_{j} \frac{d \mathbf{x}^{*}}{d \varepsilon}=-\lambda_{k}
$$

- Lagrange multiplier is negative of sensitivity of cost function to constraint value. Also called shadow price.
- Gradient calculation approaches
- Analytical and Symbolic
- Finite difference
- Automatic Differentiation
- Adjoint methods
- Sensitivity analysis
- Yields important information about the design space, both as the optimization is proceeding and once the "optimal" solution has been reached.

Reading
Papalambros - Section 8.2 Computing Derivatives

MIT OpenCourseWare
http://ocw.mit.edu

ESD. 77 / 16.888 Multidisciplinary System Design Optimization
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

