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Today‟s Topics

• Gradient calculation methods
– Analytic and Symbolic

– Finite difference

– Complex step

– Adjoint method

– Automatic differentiation

• Post-Processing Sensitivity Analysis
– effect of changing design variables

– effect of changing parameters

– effect of changing constraints
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Definition of the Gradient
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“How does the function J value change 

locally as we change elements of the 

design vector x?”

Compute partial derivatives

of J with respect to xi
i

J

x
J

Gradient vector points normal

to the tangent hyperplane of J(x)

1x

2x

3x



4 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x
1

x
2

Contour plot

 3.1

 3.1

 3.1

3.25

3.
25

3
.2

5

3.25 3.2
5

 3
.5

 3.5

 3.5

 3.5

   4

   4

   4

   4
   5

   5

Geometry of Gradient vector (2D)
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Geometry of Gradient vector (3D)
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Other Gradient-Related Quantities

• Jacobian: Matrix of derivatives of multiple functions 

w.r.t. vector of variables

• Hessian: Matrix of second-order derivatives
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Why Calculate Gradients

• Required by gradient-based optimization 

algorithms

– Normally need gradient of objective function and 

each constraint w.r.t. design variables at each 

iteration

– Newton methods require Hessians as well

• Isoperformance/goal programming

• Robust design

• Post-processing sensitivity analysis

– determine if result is optimal

– sensitivity to parameters, constraint values
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Analytical Sensitivities

If the objective function is known in closed form, we can often 

compute the gradient vector(s) in closed form (analytically):

Example:
1 2 1 2

1 2

1
,J x x x x

x x

Analytical Gradient:
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For complex systems analytical gradients are rarely available

Example

x1 = x2 =1

J(1,1)=3

0
(1,1)

0
J

Minimum
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Symbolic Differentiation

• Use symbolic mathematics programs

• e.g. MATLAB®, Maple®, Mathematica®

» syms x1 x2

» J=x1+x2+1/(x1*x2);

» dJdx1=diff(J,x1)

dJdx1 =1-1/x1^2/x2

» dJdx2=diff(J,x2)

dJdx2 = 1-1/x1/x2^2

construct a symbolic object

difference operator



10 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Finite Differences (I)

x
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Function of a single variable f(x)

• First-order finite difference
approximation of gradient:

• Second-order finite difference
approximation of gradient:
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Forward difference 
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the derivative
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the derivative

Truncation Error
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Finite Differences (II)

Approximations are derived from Taylor Series expansion:

Neglect second order and higher order terms; solve for 

gradient vector:
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Finite Differences (III)

Take Taylor expansion backwards at ox x
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Finite Differences (IV)
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Finite Differences (V)
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• Second-order finite difference
approximation of second derivative:
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Errors of Finite Differencing

Caution: - Finite differencing always has errors

- Very dependent on perturbation size
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Perturbation Size x Choice

• Error Analysis

• Machine Precision

• Trial and Error – typical value ~ 0.1-1%

1/ 2

Ax f - Forward difference
1/3

Ax f - Central difference

(Gill et al. 1981)

ox

theoretical function

computed

values

~ x

A

10 q

k kx x
Step size

at k-th iteration
q-# of digits of machine

Precision for real numbers
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Computational Expense of FD

Cost of a single objective function

evaluation of Ji

Cost of gradient vector one-sided

finite difference approximation for Ji 

for a design vector of length n

iF J

in F J

Cost of Jacobian finite

difference approximation with 

z objective functions
iz n F J

Example: 6 objectives

30 design variables

1 sec per function evaluation

3 min of CPU time

for a single Jacobian

estimate - expensive !



Complex Step DerivativeComplex Step Derivative

• Similar to finite differences, but uses an imaginary 
step [ ]p [ ]

x
xixfxf

Δ
Δ+

≈
)(Im)(' 0

0

• Second order accurate
• Can use very small step sizes e.g. 2010−≈Δx

– Doesn’t have rounding error, since it doesn’t perform 
subtraction

• Limited application areasLimited application areas
– Code must be able to handle complex step values

J.R.R.A. Martins, I.M. Kroo and J.J. Alonso, An automated method for 
sensitivity analysis using complex variables, AIAA Paper 2000-0689, 
Jan 2000
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Automatic Differentiation

• Mathematical formulae are built from a finite set of basic 

functions, e.g. additions, sin x, exp x, etc.

• Using chain rule, differentiate analysis code: add 

statements that generate derivatives of the basic 

functions

• Tracks numerical values of derivatives, does not track 

symbolically as discussed before

• Outputs modified program = original + derivative 

capability

• e.g., ADIFOR (FORTRAN), TAPENADE (C, FORTRAN), 

TOMLAB (MATLAB), many more…

• Resources at http://www.autodiff.org/

http://www.autodiff.org/


Adjoint Methods

),( uxJ

0uxR ),(

Consider the following problem:

where x are the design variables and u are the state variables.

The constraints represent the state equation.

e.g. wing design: x are shape variables, u are flow variables, 

R(x,u)=0 represents the Navier Stokes equations.

We need to compute the gradients of J wrt x:

Typically the dimension of u is very high (thousands/millions).

Minimize

s.t.

x

u

uxx d

d

d

d JJJ



Adjoint Methods

• To compute du/dx, differentiate the state 

equation:
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Adjoint Methods

• We have

• Now define

• Then to determine the gradient:

First solve (adjoint equation)

Then compute 
22
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Adjoint Methods

• Solving adjoint equation

about same cost as solving forward problem

(function evaluation)

• Adjoints widely used in aerodynamic shape optimization, 

optimal flow control, geophysics applications, etc.

• Some automatic differentiation tools have „reverse mode‟ 

for computing adjoints
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Post-Processing Sensitivity Analysis

• A sensitivity analysis is an important 
component of post-processing

• Key to understanding which design variables, 
constraints, and parameters are important 
drivers for the optimum solution

• How sensitive is the “optimal” solution J* to 
changes or perturbations of the design 
variables x*?

• How sensitive is the “optimal” solution x* to 
changes  in the constraints g(x), h(x) and 
fixed parameters p ?
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Sensitivity Analysis: Aircraft

Questions for aircraft design:

How does my solution change if I

• change the cruise altitude?

• change the cruise speed?

• change the range?

• change material properties?

• relax the constraint on payload?

• ...
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Sensitivity Analysis: Spacecraft

Questions for spacecraft design:

How does my solution change if I

• change the orbital altitude?

• change the transmission frequency?

• change the specific impulse of the propellant?

• change launch vehicle?

• Change desired mission lifetime?

• ...
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Sensitivity Analysis

Want to answer this question without having to solve the 

optimization problem again.

“How does the optimal solution change as we change 

the problem parameters?”

effect on design variables

effect on objective function

effect on constraints
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Normalization

In order to compare sensitivities from different

design variables in terms of their relative sensitivity

it may be necessary to normalize:

i

J

x o
x

“raw” - unnormalized sensitivity = partial

derivative evaluated at point xi,o

,

( )

i o

i i i

xJ J J

x x J x o

o

x
x

Normalized sensitivity captures

relative sensitivity

~ % change in objective per

% change in design variable

Important for comparing effect between design variables 

=
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Example: Dairy Farm Problem

With respect to which 

design variable is the 

objective most sensitive?

“Dairy Farm” sample problem

L

R
N

L – Length = 100 [m]

N - # of cows = 10

R – Radius = 50 [m]

cow

fence

22

2 2

100 /

A LR R

F L R

M A N

C f F n N

I N M m

P I C

Parameters:

f=100$/m

n=2000$/cow

m=2$/liter

xo

cow

cow
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Dairy Farm Sensitivity

• Compute objective at xo

• Then compute raw sensitivities

• Normalize

• Show graphically with
tornado chart
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Realistic Example: Spacecraft

X
Y

Z

What are the design variables that are “drivers”

of system performance ?

0 1 2

meters

Spacecraft
CAD model

-60 -40 -20 0 20 40 60
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Centroid X [ m]
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 Y
 [

m
]

J2= Centroid Jitter on Focal Plane [RSS LOS]

T=5 sec

14.97 m 

1 pixel

Requirement: J2,req=5 m

NASA Nexus Spacecraft Concept

Finite Element
Model

Simulation

“x”-domain “J”-domain

Image by MIT OpenCourseWare.
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Graphical Representation
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Graphical Representation of

Jacobian evaluated at design

xo, normalized for comparison.

J1: RMMS WFE most sensitive to:

Ru - upper wheel speed limit [RPM]

Sst - star tracker noise 1 [asec]

K_rISO - isolator joint stiffness [Nm/rad]

K_zpet - deploy petal stiffness [N/m]

J2: RSS LOS most sensitive to:

Ud - dynamic wheel imbalance [gcm2]

K_rISO - isolator joint stiffness [Nm/rad]

zeta - proportional damping ratio [-]

Mgs - guide star magnitude [mag]

Kcf - FSM controller gain [-]

1 2

0

1 2

u u

o

cf cf

J J

R R

J
J

J J

K K

x



33 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Parameters

Parameters p are the fixed assumptions.

How sensitive is the optimal solution x* with respect

to fixed parameters ?

Example:

“Dairy Farm” sample problem

L

R
N

cow

fence

Optimal solution:

x* =[ R=106.1m, L=0m, N=17 cows]T

Fixed parameters:

Parameters:

f=100$/m  - Cost of fence

n=2000$/cow - Cost of a single cow

m=2$/liter - Market price of milk

How does x* change as parameters

change? 
Maximize Profit

cow

cow
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Sensitivity Analysis

KKT conditions:

For a small change in a parameter, p, we require 

that the KKT conditions remain valid:

(KKT conditions)
0

d

dp
Rewrite first equation:

* *
ˆ

( ) ( ) 0, 1,...,j

j

j Mi i

gJ
i n

x x
x x

Set of

active 

constraints



Sensitivity AnalysisSensitivity Analysis
Recall chain rule. If:                                     then

ndY Y Y x∂ ∂ ∂∑

( ))(, ppYY x=

1

i

k i

dY Y Y x
dp p x p=

∂ ∂ ∂
= +
∂ ∂ ∂∑

A l i t fi t ti f KKT ditiApplying to first equation of KKT conditions:
),(ˆ

)(),(
⎟⎟
⎞

⎜⎜
⎛ ∂

+
∂ ∑ j

j

pg
ppJd λ

xx

0
ˆˆ

)(

2222 ∂∂∂⎟
⎞

⎜
⎛ ∂∂∂∂

⎟⎟
⎠

⎜⎜
⎝ ∂

+
∂

∑∑ ∑∑

∑
∈

jjk
n

j

Mj i
j

i

gxggJJ

x
p

xdp

λ
λλ

λ

0
1

=
∂∂

+
∂⎟

⎟
⎠

⎜
⎜
⎝ ∂∂

+
∂∂

+
∂∂

+
∂∂

= ∑∑ ∑∑
∈= ∈∈ Mj i

jjk

k Mj ki

j
j

kiMj i
j

i x
g

ppxx
g

xx
g

pxpx
λλ

∂∂n λ
0

1
=+

∂

∂
+

∂
∂ ∑∑

∈=
i

Mj

j
ij

n

k

k
ik c

p
B

p
xA

λ

35 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics



36 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Sensitivity Analysis

Perform same procedure on equation: 0),( * pxg j
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Sensitivity Analysis
In matrix form we can write:
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Sensitivity Analysis

We solve the system to find x and , then the sensitivity 

of the objective function with respect to p can be found:

TdJ J
J

dp p
x

(first-order 

approximation)

dJ
J p

dp

px x

To assess the effect of changing a different parameter, we 

only need to calculate a new RHS in the matrix system.
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Sensitivity Analysis - Constraints
• We also need to assess when an active constraint will 

become inactive and vice versa

• An active constraint will become inactive when its 

Lagrange multiplier goes to zero:

j

j jp p
p

Find the p that makes j zero:

0j j p

j

j

p j M

This is the amount by which we can change p before the jth

constraint becomes inactive (to a first order approximation)
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Sensitivity Analysis - Constraints

An inactive constraint will become active when gj(x) 

goes to zero:

( ) ( *) ( *) 0T

j j jg g p gx x x x

Find the p that makes gj zero:

( *)

( *)

j

T

j

g
p

g

x

x x
for all j not 

active at x*

• This is the amount by which we can change p before the jth

constraint becomes active (to a first order approximation)

• If we want to change p by a larger amount, then the problem 

must be solved again including the new constraint

• Only valid close to the optimum
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Lagrange Multiplier Interpretation

• Consider the problem: 

minimize J(x) s.t. h(x)=0

with optimal solution x*

• What happens if we change constraint  k by a small 

amount?

• Differentiating w.r.t 
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Lagrange Multiplier Interpretation

• How does the objective function change?

• Using KKT conditions:

• Lagrange multiplier is negative of sensitivity of cost 

function to constraint value.  Also called shadow 

price.

d

d
J

d

dJ *
x

k

j

jj

j

jj
d

d
h

d

d
h

d

dJ **
xx



43 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Lecture Summary

• Gradient calculation approaches

– Analytical and Symbolic

– Finite difference

– Automatic Differentiation

– Adjoint methods

• Sensitivity analysis

– Yields important information about the design space, 

both as the optimization is proceeding and once the 

“optimal” solution has been reached.

Reading  

Papalambros – Section 8.2 Computing Derivatives
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