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Today’s Topics

Computational Issues

- coupling disparate CAE/CAD tools

Definitions of Modeling and Simulation

- physics-based modeling
- empirical modeling

Model/Simulation Development Process

- module identification
- module ordering: DSM’s and N2 diagrams
- module coding: fidelity and benchmarking
- model execution = simulation
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Definitions
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Definitions

Definition:   Model    (as used in this class)

A model is a mathematical object that has the ability
to predict the behavior of a real system under a set of
defined operating conditions and simplifying assumptions.

Definition:   Simulation   (as used in this class)

Simulation is the process of exercising a model for a
particular instantiation of the system and specific set 
of inputs in order to predict the system response.
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From the Reference

System

Experiment with 

Actual System

Physical

Model

Mathematical 

Model

Analytical 

Solution

Experiment with 

Model of System

Simulation

Law & Kelton (2000), Simulation Modeling and Analysis 3rd ed., McGraw-Hill, Inc.
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Additional Detail – Next Chart

The following chart 
includes additional 
detail to emphasize the 
factors that differentiate 
a model and a 
simulation

Simulation/Model Factors:
• Real World Variability
• Reaction to Events

These relate back to the 
purpose of the 
sim/model

Models should not include all the details for all purposes

• They quickly become unwieldy & expensive
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Analysis Methods

System

Experiment with 

Actual System

Physical

Model

Mathematical 

Model

Analytical 

Solution

Numerical (Simulation)

Experiment with 

Model of System

Static

vs

Dynamic

Deterministic 

vs

Stochastic

Continuous

vs

Discrete
Law & Kelton (2000), Simulation Modeling and 

Analysis 3rd ed., McGraw-Hill, Inc.

Modified by M.J. Steele with added detail
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Model and Simulation

Development Process
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Model Development Process

Objectives 
Constraints

Design Variables

Governing
Equations

Integrate
Modules

Define 
Master Table

Code Modules

Define
Modules

Test Code

Benchmark
Sanity Check

Iterate to Improve Fidelity

DSM
N2 Diagram

Start Process

Ready For Use
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Objectives, Constraints, Design 

Variables

• Define Objectives J
• Define Design Variables x
• Define Constraints and Bounds g, h

• Determine important fixed parameters p

Influence Matrix
x1 … xn

Ji + + o

gj + o +

+  influence

o  no
influence

model relationships

This is how we want system to behave

Things about system we can change

Must satisfy this

Fixed, outside our
control yet important
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Physics Based Modeling

• Start with governing equations
• Continuum Mechanics for physical systems
• Introduce Boundary Conditions
• Introduce Initial Conditions
• External forcing functions
• Discretize system
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Governing Equations

Continuum (Structural) Mechanics
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Example: Finite Element Model

Geometry

Material
Properties
Boundary
Conditions

Assumptions
Discretization

Loads

Mass and
Inertia Matrix

Deflections,
Stress, Strain

Natural 
Frequencies
Mode Shapes

x x x FM C K

X
Y

Z

Connectivity

Time as Variable:

Static Steady State Transient
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Empirical Modeling

• Derive a model, not from physics and first 
principles, but from observation, i.e. data

• Usually leads to low order models
• Only valid under similar operating conditions
• Many cost models are of this nature
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Example: Empirical Modeling

Engi ne Si ze vs .  HP
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Linear Regression

HP = 51.48*ED + 23.12

… could do physics-
Based modeling of
this in-line 4 engine,
but instead do …

In-line engine image removed due to copyright
restrictions. Animation can be found at 
HowStuffWorks.com.

http://auto.howstuffworks.com/engine-inline.htm
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How to decompose a system

• What to do when system is new - no experience ?

• First define “black boxes” or modules based on: 

disciplinary tradition, degree of coupling of governing 
equations or availability of analysis software

• Crisply define inputs and outputs of each module

Ref: Rogers, J.L.: “A Knowledge-Based Tool for Multilevel Decomposition of

a Complex Design Problem”, NASA TP2903, 1989
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Partitioning of Equations
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Occurrence matrix for system of equations Occurrence matrix showing the system of equations
                 partitioned into three subsets

Image by MIT OpenCourseWare.
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Module Definition

What is a module in MSDO ?

A module in multidisciplinary system design optimization 
is a finite group of tightly coupled mathematical relation-

ships who are under the responsibility of a particular 
individual or organization, and where some variables 

represent independent inputs while others are 
dependent outputs. The module frequently appears as a 

“black box”  to other individuals or organizations .

Module “A”

x1

xn

...
y1

ym

...
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Modules for Simulation

• A module within a simulation architecture may be defined
as a piece of computer code which:
– Performs a compact set of calculations.
– Contains a single entry point and exit point.
– May be tested in isolation.

• Attributes of a good modular unit within a simulation 
architecture include:
– High internal coupling within the module

• All sub-functions within the module contribute to form a single primary 
function.

– Low coupling between modules

• Minimize the number of variables that flow between modules.
– Minimization of feedback loops

• Data flow is processed sequentially from input to output.
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Module Inputs and Outputs

Module i

Info coming 
from upstream
(feed-forward)

Info fed to 
downstream

(feed-forward)

OutputOutput

Input

Input

Info fed from 
downstream
(feedback)

Info fed to 
upstream

(feedback)
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Module Example

pointing requirement
vehicle inertia matrix
disturbance torques

power required
propellant amount

OutputOutput

Input

sensors
actuators 
(e.g. CMGs)

Attitude

Control

Example: 
Spacecraft Design

I
d
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• An NxN matrix used to develop and organize interface information.
• Similar to a Design Structure Matrix (DSM)
• Each module within the simulation architecture is placed along the

diagonal.
• Provides a visual representation of the flow of information through the

simulation architecture.
• Helps to identify critical modules that have many inputs and outputs. The

fidelity of critical modules should be thoroughly tested and verified.
• Explicitly defines all inputs and outputs for macro-modules and modules.
• Allows for “plug and play”

– Independent testing
– Alternative modules easily analyzed
– Can increase overall model fidelity incrementally

The N2 Diagram
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Initial random sequencing

Execution sequence goes
from upper left corner to
lower right corner

feedforward

feedback

Problem: Each instance of
feedback requires an iteration

Image by MIT OpenCourseWare.

Initial, random arrangement of modules on the N-square matrix diagonal.
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Ordered sequence

Systematic permutation groups and 
reduces number of feedback loops

The Need The Solution
Identify coupling between discipline or 
subsystems in a complex system.

Automatic identification of subsystems 
based on interdependence of design variable 
and constraints.

Modules in the N-square matrix resequenced to reduce feedback.

Actuators

Sensors

Structures and materials

Dynamics

Controls
e.g. = output = mode shapes

Image by MIT OpenCourseWare. 
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TPF Example : Overview N2 Diagram

TMAS N-Squared Diagram

Design Const. Env. Apert. Spacecraft Payload and Bus Dynamics, Control, & Stability Deployment & GINA Systems Analysis Module

Vector Vector Module Conf. Module Module Operations

Module Module

Design Vector  1 2,3,4 2,4 1,2,3 2,3,4 2,3 1 2,3,4 2,3,4 1,2,3,4 3 1 1,2,3 1,2 2 2,3,4 1,2,3,4

 Architecture Constants Vector 11 2 2,3 3 1,2 4 13,14 14,31 15,16 11,32-40 3 5 to 11 2,12 all

  Environment  1 1,2,3

 Aperture Configuration 1 1 1 1

 Payload 3,4 1,2 1,2

Power 1,6 6,7 6,7 2,3

2,3,5,6 Thermal  1,4

4  Propulsion  3

6  Communications1 to 5

8,10 6  Structure  6,10 3,4,5 6,9 6

Sub-Modules  Truss Design 1,2 1

Design Vector  State-Space Plant Model1 1,2

Architecture Constants Vector  Attitude Determination and Control 

Environment   Model Integration3

Aperture Configuration  Performance Assesment 1

Payload  Orbit Transit1,2,3 4  

Power Launch 2

Thermal  Operations 2 1

Propulsion   Capability 7,8,9  

Communications  Performance  4

Structure Cost 6

Truss Design  Cost Per Function1

State-Space Plant Model  Adaptability

Attitude Determination and Control

Model Integration

Performance Assesment

Orbit Transit

Launch

Operations

Capability

Performance 

Cost

Cost Per Function

Adaptability

m-file

Inputs

Inputs

OutputsOutputs
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Coding - Benchmarking

• Coding of modules can be done in parallel, 
once the I/O structure has been decided

• Use “dummy” input data to exercise modules 

in isolation
• Integrate modules step-by-step starting from 

upper left corner in N2-Diagram
• Do end-to-end simulation test before release
• Benchmark (“validate”) simulation against 

known cases (experimental data)
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Recap

Objectives 
Constraints

Design Variables

Governing
Equations

Integrate
Modules

Define 
Master Table

Code Modules

Define
Modules

Test Code

Benchmark
Sanity Check

Iterate to Improve Fidelity

DSM
N2 Diagram

Start Process

Ready For Use
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Example

de Weck, O. L. and Chang D.,  ”Architecture Trade Methodology for LEO 

Personal Communication Systems “, 20th International Communications Satellite 

Systems Conference, Paper No. AIAA-2002-1866, Montréal, Québec, Canada, 
May 12-15, 2002 
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Example: Communications Satellites

Can we quantify the conceptual system design 

problem using modeling and simulation?

Simulator

Design
(Input) 
Vector

Performance 
Capacity
Cost
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Design (Input) Vector X

• The design variables are:
– Constellation Type: C
– Orbital Altitude: h
– Minimum Elevation Angle: min

– Satellite Transmit Power: Pt

– Antenna Size: Da

– Multiple Access Scheme MA:
– Network Architecture: ISL

Design Space

Polar, Walker

500,1000,1500,2000 [km]

2.5,7.5,12.5 [deg]

200,400,800,1600,2400 [W]

1.0,2.0,3.0 [m]

MF-TDMA, MF-CDMA [-]

yes, no [-]

This results in a 1440
full factorial, combinatorial
conceptual design space

Astro-
dynamics

Satellite
Design

C: 'walker'

h: 2000

emin: 12.5000

Pt: 2400

DA: 3

MA: 'MFCD'

ISL: 0

X1440=

Network
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Objective Vector (Output) J

• Performance (fixed)
– Data Rate per Channel: R=4.8 [kbps]
– Bit-Error Rate: pb=10-3

– Link Fading Margin:   16 [dB]

• Capacity
– Cs: Number of simultaneous duplex channels
– Clife: Total throughput over life time [min]

• Cost
– Lifecycle cost of the system (LCC [$]), includes:

• Research, Development, Test and Evaluation (RDT&E)
• Satellite Construction and Test
• Launch and Orbital Insertion
• Operations and Replenishment

– Cost per Function, CPF [$/min]

Consider

Cs: 1.4885e+005

Clife: 1.0170e+011

LCC: 6.7548e+009

CPF: 6.6416e-002

J1440=
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Multidisciplinary Simulator Structure

Constellation

Satellite
Network

Link
Budget

Spacecraft CostLaunch
Module

Capacity

Input
Vector

Constants
Vector

Output
Vector

x p

J

satm

Note: Only partial input-output relationships shown

min,h

,T p nGWspotn

sR
sC

LCC

, ,t aP D MA

ISL

satm

LV

satm Satellite Mass
T Number of Satellites
p Number of orbital planes

spotn Number of spot beams
nGW Number of gateways
LV Launch vehicle selection
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Governing Equations

a) Physics-Based 
Models RTLkL

GPG

N

E

sys.add.space

tr

0

b
Energy per bit 
over noise ratio:

(Link Budget)

b) Empirical 
Models

(Spacecraft)

0.51

38 0.14sat t propm P m

Scaling models
derived from

FCC database
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Benchmarking

Benchmarking is the process of validating a model or simulation
by comparing the predicted response against reality.

Benchmarking Result 1: Simultaneous channels of the 

constellation
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Benchmarking Result 3: Satellite mass
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Benchmarking Result 2: Lifecycle cost
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Benchmarking Result 4: Number of satellites in the constellation
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Simulation Results

Global Capacity Cs [# of duplex channels]
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Simple Example 

(Prep for Homework A1)
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Example: Communications Satellite

Design of a geosynchronous communications satellite

Design problem (Define D.V., objectives, constraints): 
How should antenna (D) and solar array (A) be sized for 
a given orbital period (p) such that a data rate 
requirement (R=Rreq) is met, while minimizing cost (C) ?

Earth
Satellite

Ground 
Station

Main Lobe
Antenna Bus Solar 

Panel
r = 6378 [km]

S

D A

ηt

ηAPbus

θ

Image by MIT OpenCourseWare.
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Comsat: Governing Equations

Communications:

Power:

Cost:

Orbits:

cos     [W]t A o avg busP A W P

2

2
   [bps]

16

t
t

D
R P

S

Objective:  min C ,  Constraint:  R>=Rreq

(link budget)

3/ 241.66 10    [min]Ep S r

22500 12000 1 +100     [$]busC D A P

(orbital period)

(power budget)

(cost budget)
Bus Engineering: 10      [W]bus tP P
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Comsat: Master Table

D Antenna Diameter [m] design var.
A Solar Panel Area [m2] design var.
p Orbital Period [min] design var.
R Data Rate [bps] constraint
C Cost [$] objective
Pt Transmitter Power [W] dependent

Pbus Bus Power [W] dependent

a Sun incidence angle [deg] parameter

a,t, array/xmit efficiencies [%] parameter
S Orbital altitude [km] dependent

constant [-] parameter
Wo Solar constant [W/m2] parameter
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ComSat Block Diagram

CostD
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p

C

Input
Vector
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Comsat N2 Diagram
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In p D A D,A

Orbits S

Comm R

Pt Powe

r

Pt

Pbus Bus Pbus

Cost C

Out

iterative block
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Computational

Implementation
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Computational Issues

• Computer technologies have been changing the 
environment of engineering design - enabling MDO

• Hardware: Advances in processor speed, memory 
and storage

• Software: Powerful disciplinary analysis and 
simulation programs (e.g. Nastran, Fluent …)

• This also creates new difficulties: Most activities 
involve stand-alone programs and many engineers 
spend 50-80% of their time organizing data and 
moving it back-and-forth between applications

Data must be shared between disciplines more easily 
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Coupling Disparate Tools

Application “ ”

E.g. MATLAB®, Excel, C++

Case 1: 
Within one application on
the same computer

Case 2: 
Between different applications 
on the same computer

BA

C D

E

in

out

BA

C

out

D

Bin

E

* Interface files

“ ”

“ ”
“ ”

* **

*
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Case 3: In a LAN or WAN environment

Implementation and Ownership (II)

Owner A

Owner B

Owner C
BA

C

out

D

B
in

E

“ ”

“ ”
“ ”

Owner G

#

Design Team Site

#

#

Map

# Server
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Modeling-Simulation Environments
• Integrated Modeling & Simulation

– Write functions and integrate via Master script
– MATLAB, Mathematica®  are popular environments

• ICEMaker
– Developed at Caltech/JPL
– linked spreadsheets (client server)

• DOME (MIT) - CO (Oculus)
– DOME based peer-peer system
– API’s into numerous Engineering applications

• FIPER (Simulia – Dassault Systems)
– Client-server enterprise system
– Targeted at the corporate environment

• PHX Model Center
– Phoenix Integration – Flagship Product
– Desktop Integration Environment
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Lecture Summary

• Follow a logical model & simulation 
development process, don’t forget 

benchmarking
• Decomposition is crucial in order to facilitate 

code integration and coupling
• N2/DSM Matrix is useful tool to organize data
• Minimize the number of feedback loops
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