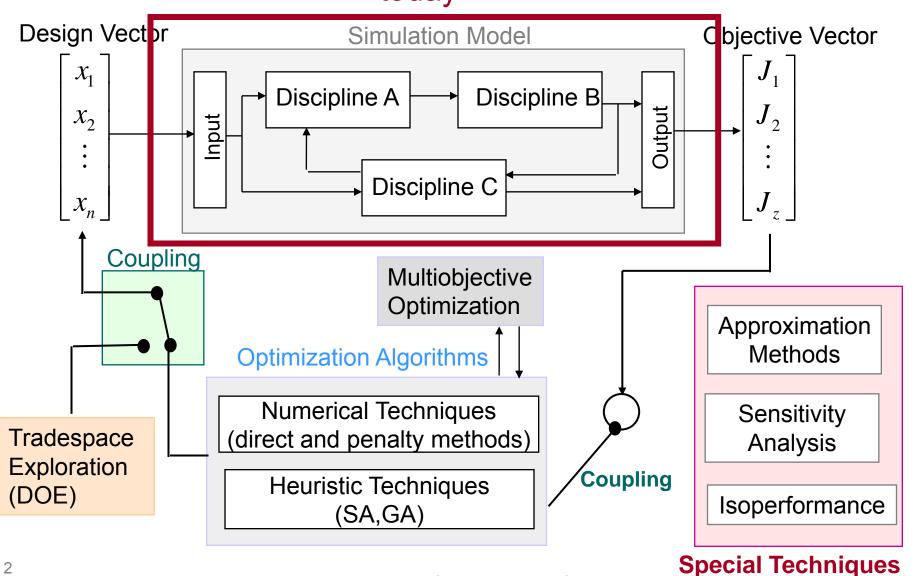


Multidisciplinary System Design Optimization (MSDO)


Lecture 3: Modeling and Simulation

Prof. Olivier de Weck

MSDO Framework today

16.888

ESD 77

Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

l esd

Definitions of Modeling and Simulation

- physics-based modeling
- empirical modeling

Model/Simulation Development Process

- module identification
- module ordering: DSM's and N² diagrams
- module coding: fidelity and benchmarking
- model execution = simulation

Computational Issues

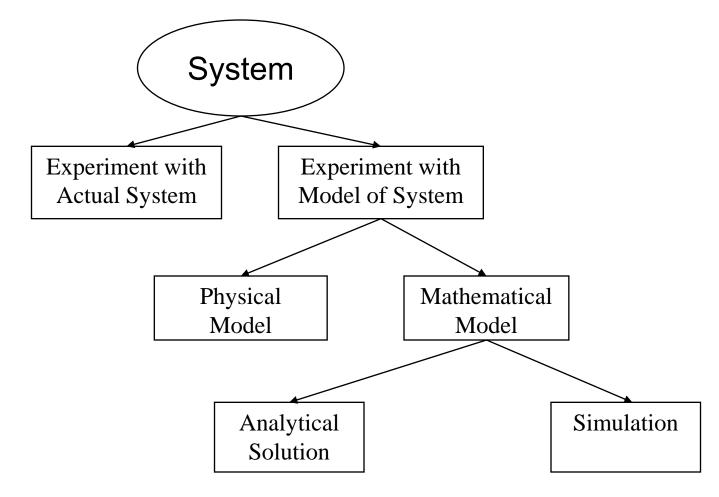
- coupling disparate CAE/CAD tools

Definitions

Definition: *Model* (as used in this class)

A model is a mathematical <u>object</u> that has the ability to predict the behavior of a real system under a set of defined operating conditions and simplifying assumptions.

Definition: *Simulation* (as used in this class)


Simulation is the <u>process</u> of exercising a model for a particular instantiation of the system and specific set of inputs in order to predict the system response.

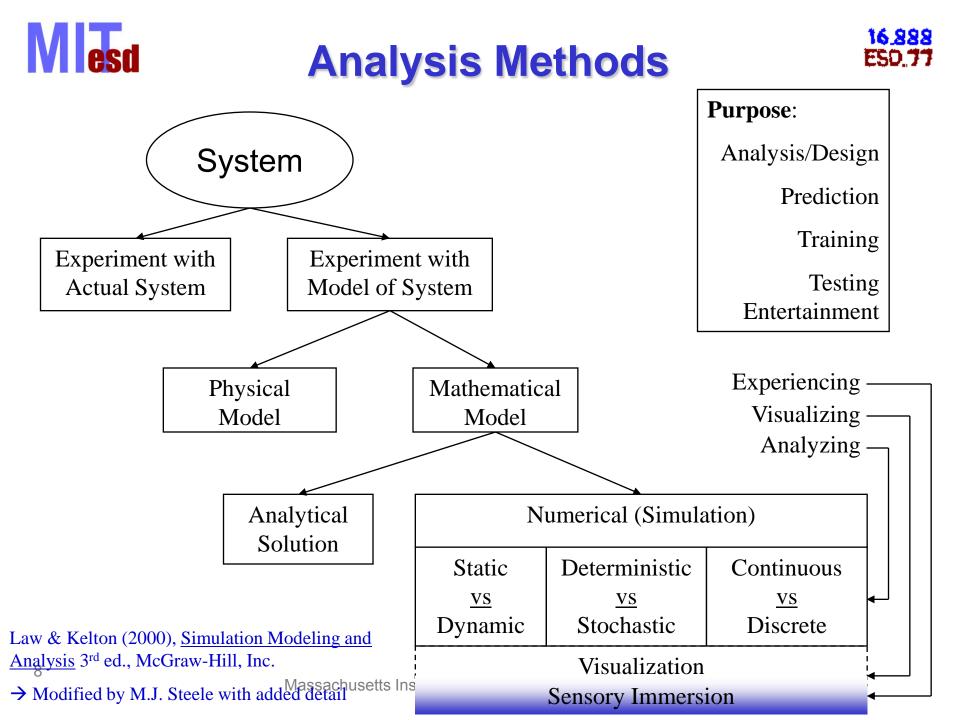
From the Reference

16.888

ESD 77

Law & Kelton (2000), Simulation Modeling and Analysis 3rd ed., McGraw-Hill, Inc.

Mesd Additional Detail – Next Chart

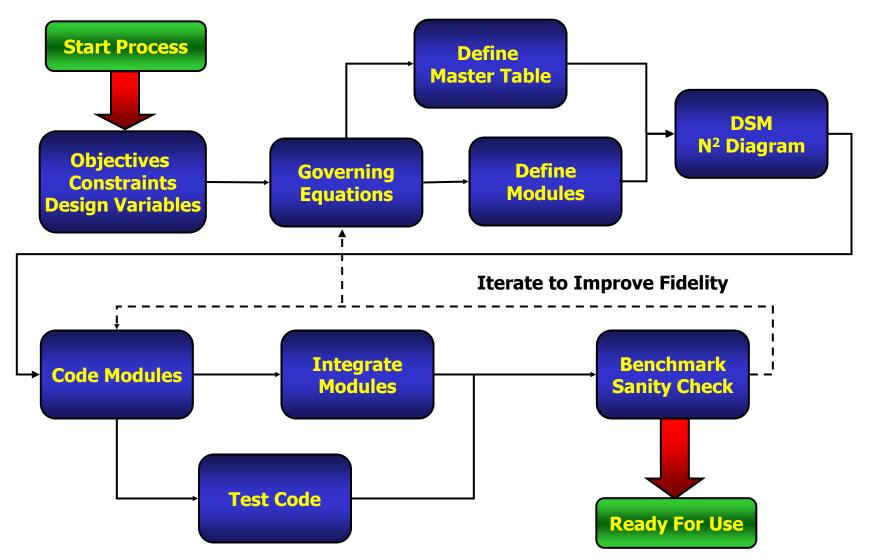

The following chart includes additional detail to emphasize the factors that differentiate a model and a simulation Simulation/Model Factors:

- Real World Variability
- Reaction to Events

These relate back to the purpose of the sim/model

Models should not include all the details for all purposes

• They quickly become unwieldy & expensive



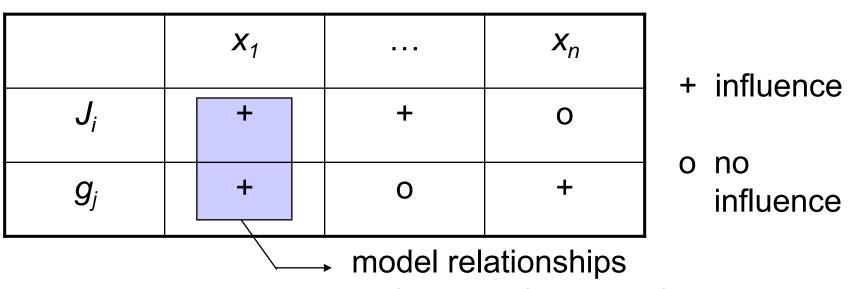
Model and Simulation Development Process

Model Development Process

16.888

ESD 77

l esd


Objectives, Constraints, Design Variables

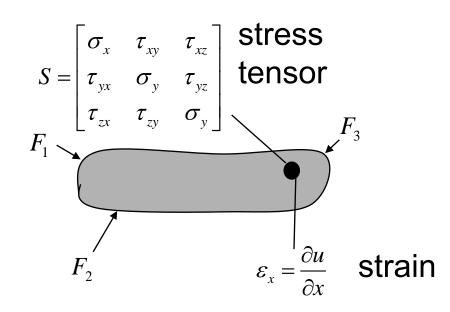
- Define Objectives J This is how we want system to behave
- Define Design Variables **x** Things about system we can change
- Define Constraints and Bounds **g**, **h** Must satisfy this

Influence Matrix

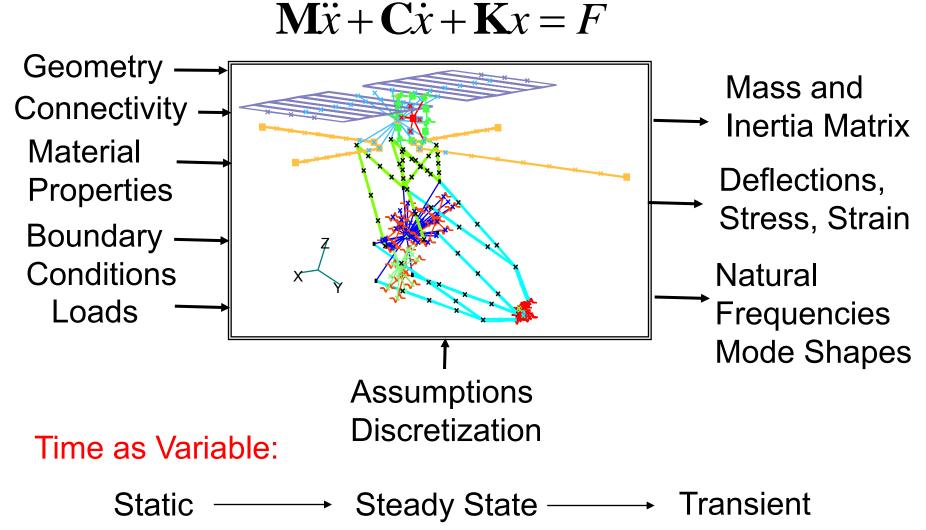
 Determine important fixed parameters p Fixed, outside our control yet important

Mese Physics Based Modeling

16.888 ESD.77

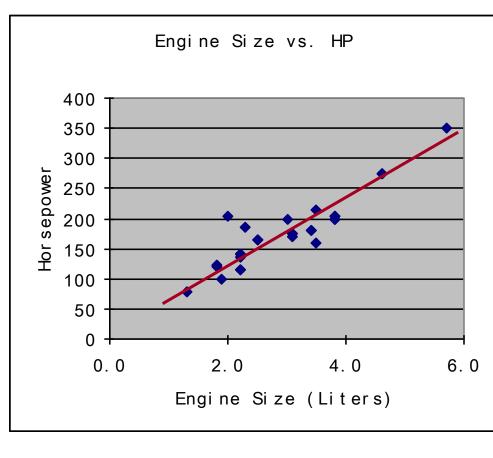

- Start with governing equations
- Continuum Mechanics for physical systems
- Introduce Boundary Conditions
- Introduce Initial Conditions
- External forcing functions
- Discretize system

Governing Equations


Continuum (Structural) Mechanics

-Equilibrium Equations $\Sigma F_i = 0$ -Constitutive equations $\sigma_x = E\varepsilon_x$ -Compatibility equations $\varepsilon_x = \frac{dx' - dx}{dx}$

Mesd Example: Finite Element Model



- Derive a model, not from physics and first principles, but from observation, i.e. data
- Usually leads to low order models
- Only valid under similar operating conditions
- Many cost models are of this nature

Mesd Example: Empirical Modeling

In-line engine image removed due to copyright restrictions. Animation can be found at HowStuffWorks.com.

16,888

FSD

... could do physics-Based modeling of this in-line 4 engine, but instead do ...

Linear Regression

 $HP = \alpha \cdot ED + \beta$

HP = 51.48*ED + 23.12

Mesd How to decompose a system

- What to do when system is new no experience ?
- First define "black boxes" or modules based on: disciplinary tradition, degree of coupling of governing equations or availability of analysis software
- Crisply define inputs and outputs of each module

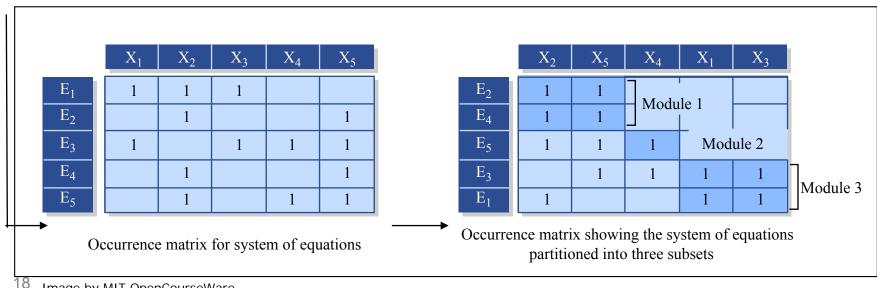
Ref: Rogers, J.L.: "A Knowledge-Based Tool for Multilevel Decomposition of a Complex Design Problem", NASA TP2903, 1989

Partitioning of Equations

$$\mathsf{E1} \quad x_1 x_2 - 2x_3 + 2 = 0$$

$$E2 \quad x_2 + 3x_5 - 9 = 0$$

E3 $x_1 - x_4 x_5 - x_3 + 10 = 0$


$$\mathsf{E4} \quad 9x_5 - 3x_2 + 7 = 0$$

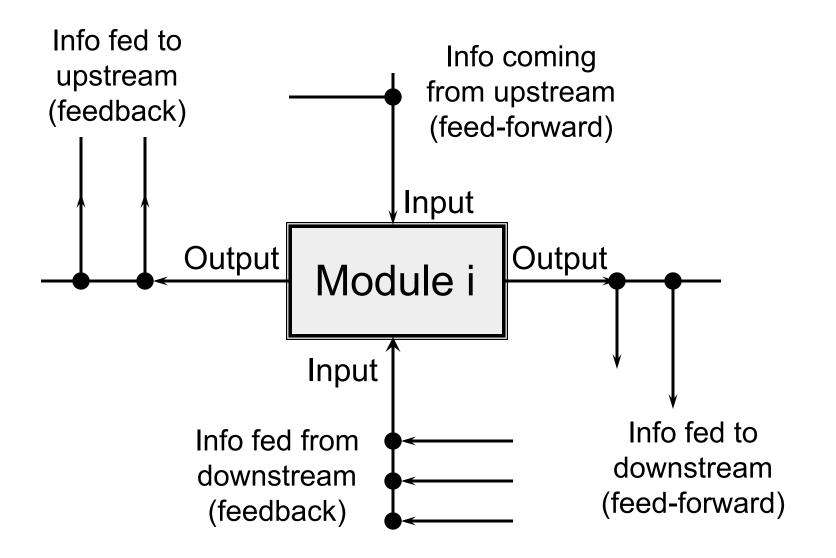
$$\mathsf{E5} \quad x_2 x_5 - x_2 x_4 + x_2 - 9 = 0$$

- -5 variables
- -5 independent equations

16.888

- -no degrees of freedom
- 1. Solve x_2, x_5 from E_2 and E_4 2. Solve x_4 from E_5 3. Solve x_1 and x_3 from E_3 and E_1

³ Image by MIT OpenCourseWare. Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

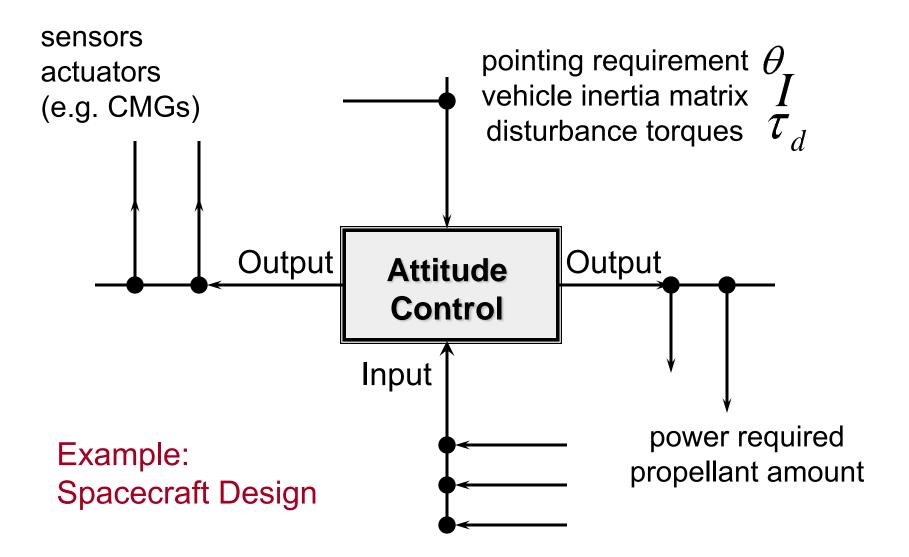

What is a module in MSDO?

A module in multidisciplinary system design optimization is a finite group of tightly coupled mathematical relationships who are under the responsibility of a particular individual or organization, and where some variables represent independent inputs while others are dependent outputs. The module frequently appears as a "black box" to other individuals or organizations.

- A module within a simulation architecture may be defined as a piece of computer code which:
 - Performs a compact set of calculations.
 - Contains a single entry point and exit point.
 - May be tested in isolation.
- Attributes of a good modular unit within a simulation architecture include:
 - High internal coupling within the module
 - All sub-functions within the module contribute to form a single primary function.
 - Low coupling between modules
 - Minimize the number of variables that flow between modules.
 - Minimization of feedback loops
 - Data flow is processed sequentially from input to output.

Mese Module Inputs and Outputs

16.888

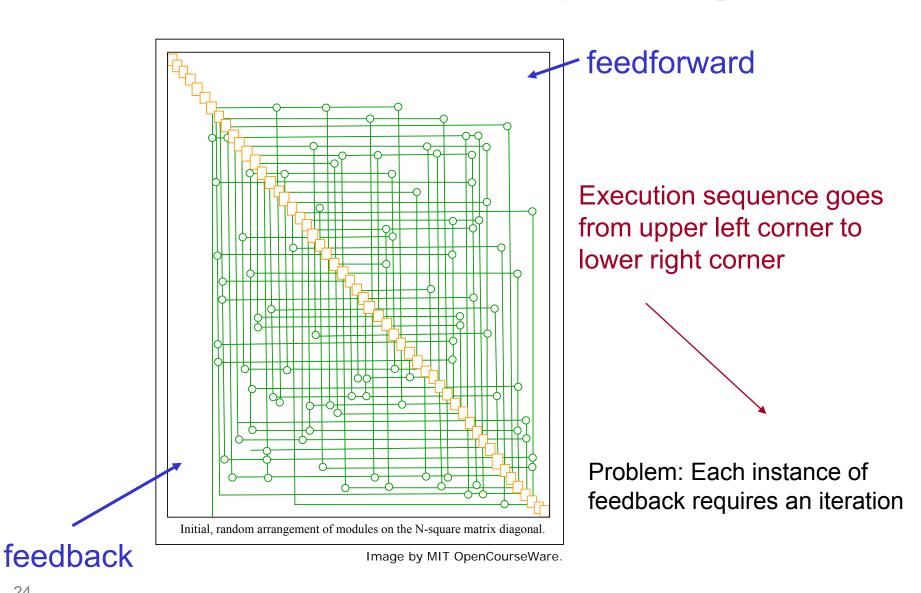

ESO 7

Module Example

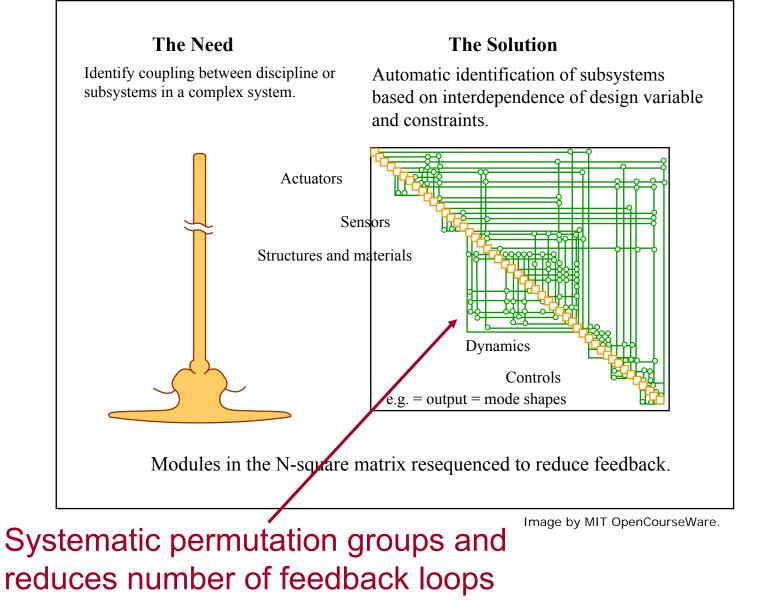
16.888

ESD.

The N² Diagram


- An NxN matrix used to develop and organize interface information.
- Similar to a Design Structure Matrix (DSM)
- Each module within the simulation architecture is placed along the diagonal.
- Provides a visual representation of the **flow of information** through the simulation architecture.
- Helps to **identify critical modules** that have many inputs and outputs. The fidelity of critical modules should be thoroughly tested and verified.
- Explicitly defines all **inputs** and **outputs** for macro-modules and modules.
- Allows for "plug and play"
 - Independent testing
 - Alternative modules easily analyzed
 - Can increase overall model fidelity incrementally

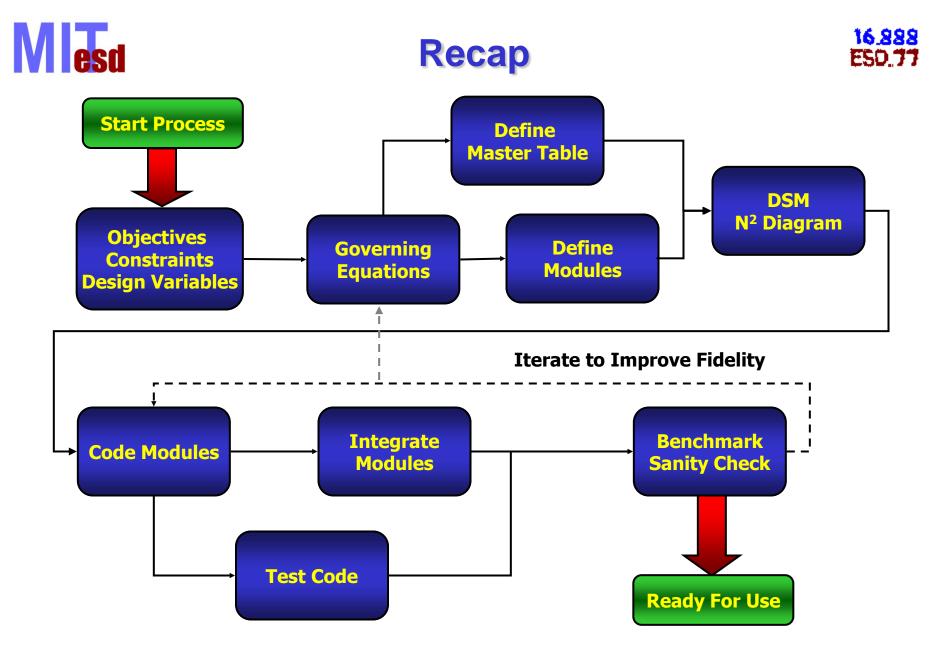
Initial random sequencing


16,888

F50 '

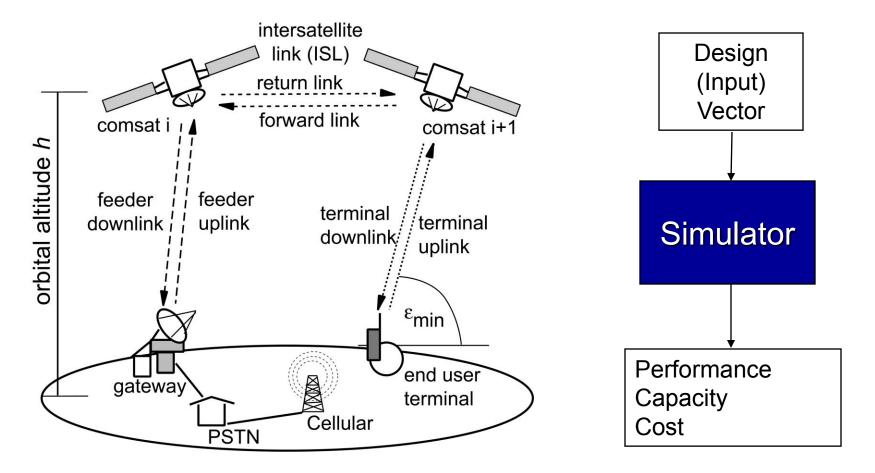
Ordered sequence

TPF Example : Overview N² Diagram


16.888	
ESD.77	

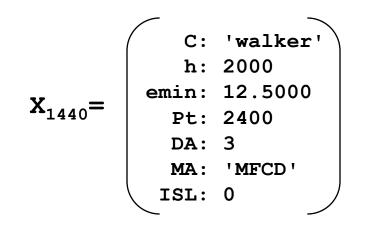
									TMA	S N-S	quare	d Diag	gram									
Design		Env.	Apert.	S	pacecra	ft Payloa		us	Dy	namics,	Control,		ity			eploymer		GIN	IA Syste	ms Anal	ysis Mor	dule
vector	vector	Module	Conf. Module			Module					Module					Operations Module						
		1	2,3,4	2,4	1,2,3	2,3,4	2,3	1	2,3,4			1,2,3,4	3		1		1,2,3	1,2	2	2,3,4		1,2,3,4
			11	2	2,3	3	1,2	4	13,14	14,31	15,16	11,32-40					3	5 to 11		2,12	 	all
						1			4	4		1,2,3						4			───	──
							10		1	1		1						1			───	───
					3,4	4.0	1,2		1,2												<u> </u>	
					0.0.5.0	1,6	6,7	6,7	2,3												 	
					2,3,5,6				1,4 3												 	
					4				-					-							<u> </u>	+
					6	8,10	6		1 to 5			6,10		245		6.0				6	<u> </u>	
Sub-Mo	ماريام					0,10	0				4.0	0,10	1	3,4,5		6,9				0	 	
Sub-INO	aules	Design	Vaatan								1,2	4	1.2								<u> </u>	
			cture Con	ata nta \	laatar				-				1,2	<u> </u>							<u> </u>	-
		Environ		stants	ector									3							 	+
		-	e Configu	ration										5				1			<u> </u>	-
		Payload		lation												1,2,3	4				<u> </u>	+
		Power														1,2,0	-			2	<u> </u>	-
		Therma																2		1	<u> </u>	
		Propuls																~	7.8.9			-
			nications	:															1,0,0		4	-
		Structu																			6	-
		Truss D									Inr	outs										1
		State-S	pace Plai	nt Mode								Juis						-				
			Determi			rol						Ļ										-
			ntegratio																			
			ance As		t			(Dutpu	tc 🗲	_ m_	file	→ (Jutpul	TS							
		Orbit Tr							Jucha	13												
		Launch																				
		Operati									-											
		Capabil	ity								Inp	outs										
		Perform	nance																			
		Cost																				
			r Functio	n																		
		Adapta	bility																			

- Coding of modules can be done in parallel, once the I/O structure has been decided
- Use "dummy" input data to exercise modules in isolation
- Integrate modules step-by-step starting from upper left corner in N²-Diagram
- Do end-to-end simulation test before release
- Benchmark ("validate") simulation against known cases (experimental data)



de Weck, O. L. and Chang D., "Architecture Trade Methodology for LEO Personal Communication Systems ", *20th International Communications Satellite Systems Conference*, Paper No. AIAA-2002-1866, Montréal, Québec, Canada, May 12-15, 2002

Example: Communications Satellites


Can we quantify the conceptual system design problem using modeling and simulation?

Design (Input) Vector X

 The design variables are: 							
	(-	Constellation Type: C					
Astro-	{ -	Orbital Altitude: h					
dynamics	-	Minimum Elevation Angle: ϵ_{min}					
		Satellite Transmit Power: P _t					
Satellite	{ _	Antenna Size: D _a					
Design		Multiple Access Scheme MA:					
Network -	-]	Network Architecture: ISL					

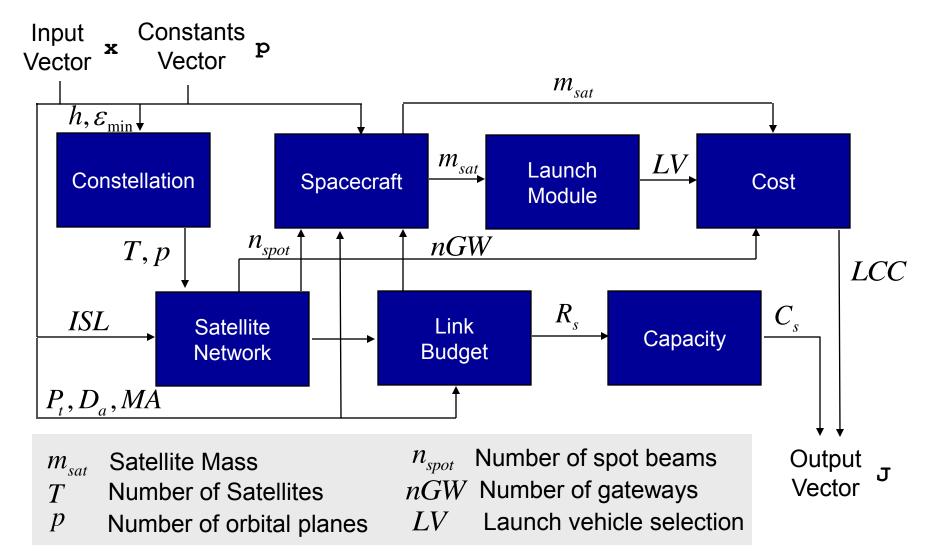
Design Space

Polar, Walker	
500,1000,1500,2000	[km]
2.5,7.5,12.5	[deg]
200,400,800,1600,2400	[W]
1.0,2.0,3.0	[m]
MF-TDMA, MF-CDMA	[-]
yes, no	[-]

This results in a <u>1440</u> full factorial, combinatorial conceptual design space

Objective Vector (Output) J

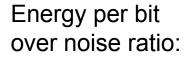
- Performance (fixed)
 - Data Rate per Channel: R=4.8 [kbps]
 - Bit-Error Rate: p_b=10⁻³
 - Link Fading Margin: 16 [dB]
- Capacity
 - C_s: Number of simultaneous duplex channels
 - C_{life}: Total throughput over life time [min]
- Cost
 - Lifecycle cost of the system (LCC [\$]), includes:
 - Research, Development, Test and Evaluation (RDT&E)
 - Satellite Construction and Test
 - Launch and Orbital Insertion
 - Operations and Replenishment
 - Cost per Function, CPF [\$/min]


32

Consider

Cs: 1.4885e+005 Clife: 1.0170e+011 J₁₄₄₀= LCC: 6.7548e+009 CPF: 6.6416e-002

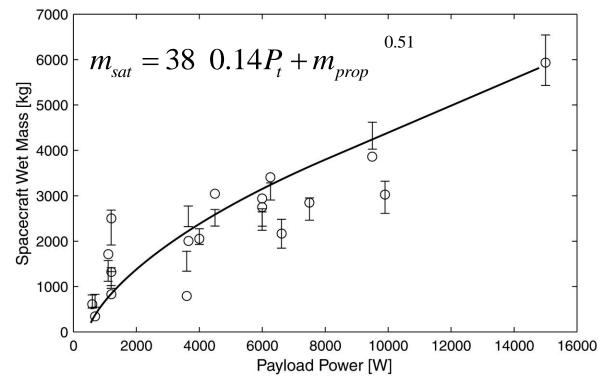
Multidisciplinary Simulator Structure



Note: Only partial input-output relationships shown

Governing Equations

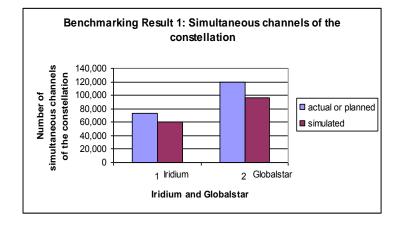
a) Physics-Based Models

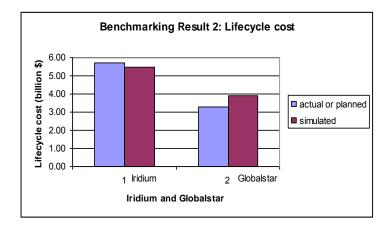

16.888

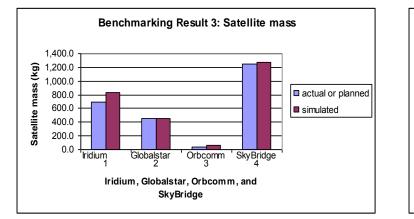
FSD

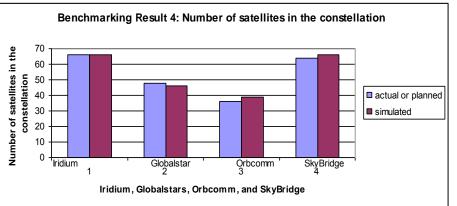
(Link Budget)

Scaling models derived from FCC database

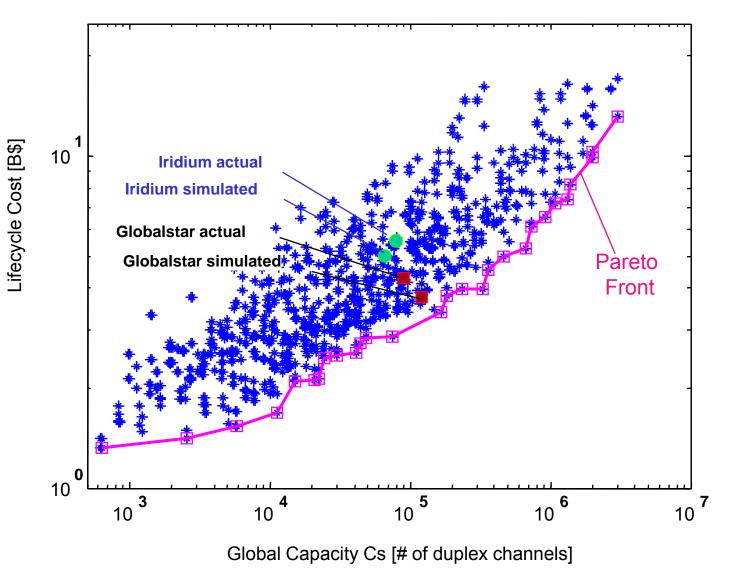





Benchmarking



Benchmarking is the process of validating a model or simulation by comparing the predicted response against reality.



Simulation Results

16.888

ESD.77

Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

M esd

Simple Example (Prep for Homework A1)

Mesd Example: Communications Satellite

Design of a geosynchronous communications satellite

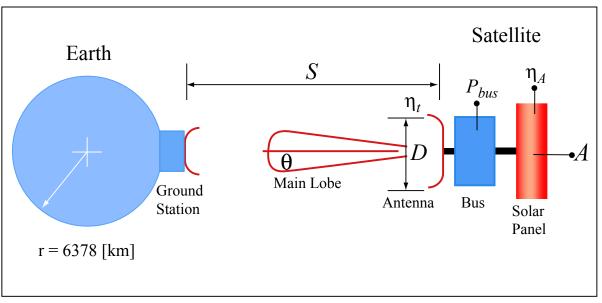


Image by MIT OpenCourseWare.

16 <u>888</u> 31

Design problem (Define D.V., objectives, constraints): How should antenna (*D*) and solar array (*A*) be sized for a given orbital period (*p*) such that a data rate requirement ($R=R_{req}$) is met, while minimizing cost (C) ?

Mesd Comsat: Governing Equations

16 888

Communications: $R = \alpha P_t \frac{D^2 \eta_t}{16S^2}$ [bps] (link budget) Power: $P_t = A \eta_A W_o \cos \theta_{avg} - P_{bus}$ [W] (power budget)

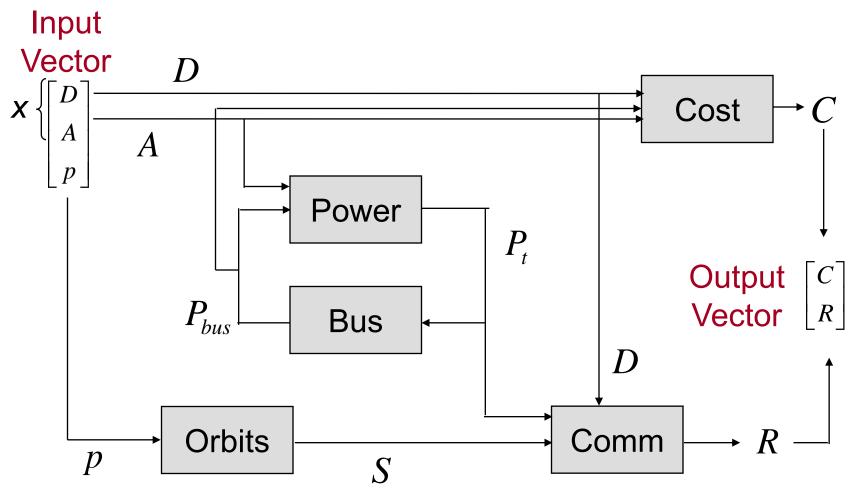
Orbits:
$$p = 1.66 \cdot 10^{-4} S + r_E {and (orbital period)}^{3/2}$$

Cost: $C = 2500 \cdot D^2 + 12000 \cdot A + 1 + 100 \cdot P_{bus}$ [\$] Bus Engineering: $P_{bus} = 10 \cdot \sqrt{P_t}$ [W] (cost budget)

Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Comsat: Master Table

D	Antenna Diameter	[m]	design var.	
Α	Solar Panel Area	[m ²]	design var.	
p	Orbital Period	[min]	design var.	
R	Data Rate	[bps]	constraint	
С	Cost	[\$]	objective	
P_t	Transmitter Power	[W]	dependent	
P _{bus}	Bus Power	[W]	dependent	
$ heta_{a}$	Sun incidence angle	[deg]	parameter	
$\eta_{a,t,}$	array/xmit efficiencies	[%]	parameter	
S	Orbital altitude	[km]	dependent	
α	constant	[-]	parameter	
W _o	Solar constant	[W/m ²]	parameter	



ComSat Block Diagram

16.888

ESO 7

BLOCK DIAGRAM

Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Comsat N² Diagram

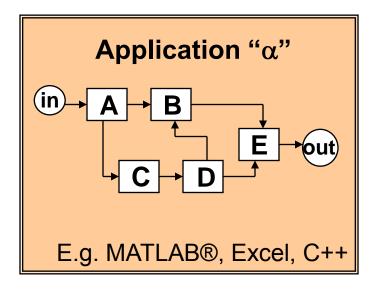
In	р	D	А		D,A	
	Orbits	S				
		Comm				R
		Pt	Powe r	Pt		
			Pbus	Bus	Pbus	
					Cost	С
						Out

iterative block

Computational Implementation

Computational Issues

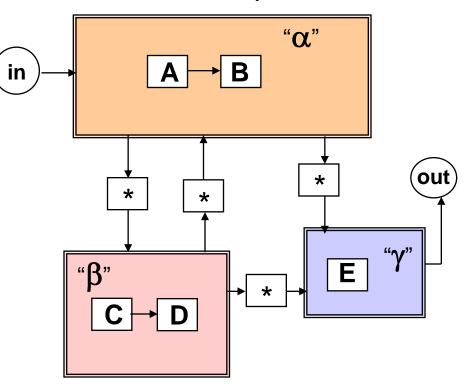
- Computer technologies have been changing the environment of engineering design - enabling MDO
- <u>Hardware</u>: Advances in processor speed, memory and storage
- <u>Software:</u> Powerful disciplinary analysis and simulation programs (e.g. Nastran, Fluent ...)
- This also creates new difficulties: Most activities involve stand-alone programs and many engineers spend 50-80% of their time organizing data and moving it back-and-forth between applications


Data must be shared between disciplines more easily

Coupling Disparate Tools

<u>Case 1</u>:

Within one application on the same computer

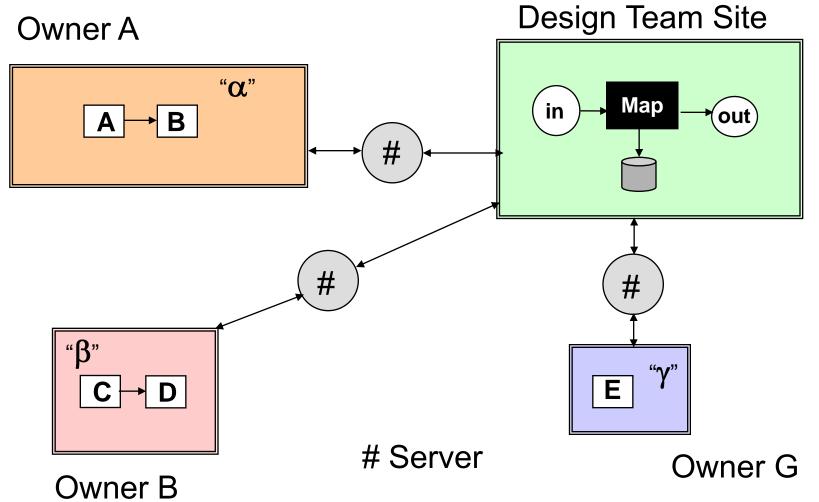


<u>Case 2</u>:

Between different applications on the same computer

16.888

ESO '



* Interface files

Mesd Implementation and Ownership (II)

Case 3: In a LAN or WAN environment

Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Modeling-Simulation Environments

- Integrated Modeling & Simulation
 - Write functions and integrate via Master script
 - MATLAB, Mathematica® are popular environments
- ICEMaker
 - Developed at Caltech/JPL
 - linked spreadsheets (client server)
- DOME (MIT) CO (Oculus)
 - DOME based peer-peer system
 - API's into numerous Engineering applications
- FIPER (Simulia Dassault Systems)
 - Client-server enterprise system
 - Targeted at the corporate environment
- PHX Model Center
 - Phoenix Integration Flagship Product
 - Desktop Integration Environment

- Follow a logical model & simulation development process, don't forget benchmarking
- Decomposition is crucial in order to facilitate code integration and coupling
- N²/DSM Matrix is useful tool to organize data
- Minimize the number of feedback loops

- Rogers, James L.: DeMAID/GA User's Guide Design Manager's Aid for Intelligent Decomposition with a Genetic Algorithm, April 1996, NASA TM – 110241.
- Steward, D.V., 1981, Systems Analysis and Management: Structure, Strategy, and Design, New York: Petrocelli.
- D.V. Steward. "Partitioning and Tearing Systems of Equations", SIAM Journal of Numerical Analysis. Ser.B, vol.2, no.2, 1965, pp.345-365
- de Weck, O. L. and Chang D., "Architecture Trade Methodology for LEO Personal Communication Systems ", <u>20th International</u> <u>Communications Satellite Systems Conference</u>, Paper No. AIAA-2002-1866, Montréal, Québec, Canada, May 12-15, 2002
- Ulrich, K.T., and S.D. Eppinger, 1995, *Product Design and Development*, McGraw-Hill.
- The Design Structure Matrix Website, http://www.dsmweb.org/

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.