Engineering Systems
Doctoral Seminar

ESD.83 – Fall 2011

Session 6

Faculty: Chris Magee and Joe Sussman
TA: Rebecca Kaarina Saari
Guest: Professor Stuart Kauffman
Session 6: Agenda

- Welcome and Overview of class 6 (5 min.)
- Dialogue with Professor Kauffman (55min)
- Break (10 min.)
- Discussion of other papers (30-40 min)
- Theme and topic integration (Magee)
 - High variance, normal distributions and power laws
 - Research Process I (more in later sessions)
 - Visual Thinking and analysis of data
- Next Steps -preparation for week 7- (5 min.)
Degree Distributions

- Define \(p_k \) as the fraction of nodes in a network with degree \(k \). This is equivalent to the probability of randomly picking a node of degree \(k \).

- A plot of \(p_k \) can be formed by making a histogram of the degrees of the nodes. This is the degree distribution of the network.

- Histograms
 - Normal (and nearly so)
 - Skewed (and heavily skewed)

- Suggest some normal or nearly normal distributions...and some not likely to be normal.
Heights of Males

Speeds of Cars

Histogram of speeds in miles per hour of cars on UK motorways. Data from Transport Statistics 2003 (UK Department for Transport).
A heavily skewed distribution

M. E. J. Newman, cond-mat/0412004v2
Degree Distributions II

- Define p_k as the fraction of nodes in a network with degree k. This is equivalent to the probability of randomly picking a node of degree k.

- A plot of p_k can be formed by making a histogram of the degrees of the nodes. This is the degree distribution of the network.

- Histograms
 - Normal (and nearly so)
 - Skewed (and heavily skewed)

- Reasons for normal vs. skewed?

- Power law (skewed) $p_k \sim k^{-\alpha}$

- Why power laws?
Power laws are ubiquitous

More normal than Normal

Low variability

Gaussian

Central Limit Theorem (CLT)

Exponential

Marginalization (Markov property)

Power law

High variability

CLT Marginalization

Maximization Mixtures

From seminar by John Doyle at GT in Nov. 2004
Summary (sessions 1, 2, 3, and 4)

- Research must involve both observation of the world and models/theories (abstractions) to be progressive (cumulative).
- Qualitative and quantitative approaches are necessary in such research with qualitative stronger in initial work. The initial quantitative models are most important and may not be very “constraining” (predictive).
- Iteration between models and observations is essential.
A Research Process

1. Development of conceptual understanding (qualitative framework)
2. Development of quantitative model
3. Observe (system)
4. Analyze observations
5. Generalize or simplify/complicate model
A Research Process 2

1. Development of conceptual understanding (qualitative framework)

2. Development of quantitative model

3. Observe (system)
 - Design a specific version of a known procedure
 - Develop a new observational procedure
 - Find, and/or extract and combine data

4. Analyze observations
 - Use existing models to “reduce” data to model-relevant
 - Develop new models to “reduce” data
 - “Consilience” among observations of various kinds

5. Generalize or simplify/complicate model
Strategies for Advancing Engineering Systems as a Field

- Innovative modeling and prediction
- Systematic observation and analysis
- Impacting policy and practice
- Advancing core theory
Visual thinking and data visualization
“Modules” for thinking

- Logical (including formal mathematics)
- Narrative (time and event correlation)
- Numeracy (or quantitative thinking)
 - Having appropriate *intuition* about magnitude
 - Ability to quickly calibrate
 - *Ability to make reasonable estimates* about the system relatively quickly
 - Knowing the numbers and the way they *change over time*
 - *Common sense in using numbers* to assess impact

- Visual thinking (the largest “dedicated” brain area) and clearest “module”

- All of these are used in thinking about systems (so “systems thinking” is not a module)

© 2009 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology
Self-Observations on Thinking

- As you think to solve the following puzzle, *observe your thoughts* to the best of your ability

- “One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain. The narrow path, no more than a foot or two wide, spiraled around the mountain to a glittering temple at the summit. The monk ascended at varying rates of speed, stopping many times along the way to rest and eat the dried fruit he carried with him. He reached the temple shortly before sunset. After several days of fasting and meditation, he began his journey back along the same path, starting at sunrise and again walking at variable speeds with many pauses along the way. Of course, his fastest speeds and average speed while descending were higher than those he achieved while climbing”

- Prove that there is a single spot along the path that the monk will occupy on both trips at precisely the same time of day.
Self Observations on Thinking

- How was your thinking represented? How did you know you were thinking?
- Did you ignore some facts?
- Did you use other mental operations to explore the problem?
- How difficult was it to “observe” your own thinking?
Self Observations on Thinking

☐ How was your thinking *represented*?
 - Internal voice, talking to oneself..
 - Bodily gestures, tasting the dried fruit, *seeing* the monk move on the path

☐ Did you ignore some facts?
 - “Glittering” temple, dried fruit, spiral path?

☐ Did you use other mental operations to explore the problem?
 - Rotation or “superimposition”, mathematical derivation, logical rules

☐ How difficult was it to “observe” your own thinking?
 - Very difficult and ambiguous
Generalized Observations on Thinking

☐ How was your thinking represented?
 ■ There are multiple representations used for thinking.

☐ Did you ignore some facts?
 ■ We think by performing a number of active mental operations and abstraction is a key one.

☐ Did you rotate or superimpose to explore the problem?
 ■ Such operations are nearly impossible in language.

☐ How difficult was it to “observe” your own thinking?
 ■ Most people infer operations by observing the resulting representation.
Generalized Observations on Thinking

- Thinking is perceived by our consciousness in multiple representations.
- Thinking involves a variety of mental operations.
- Thinking occurs above and mostly below the level of our conscious awareness.
 - Operations are usually chosen and performed below the level of our conscious awareness.
Flexible Thinking

- Why might it be useful to be more flexible in our thinking procedures?
- What are some elements of thinking flexibly?
- How might we be flexible in our Level of thinking?
- How might we be more flexible in our thinking operations?
- Flexibility in Thinking Representations is essential to flexibility in operations.
- see McKim’s book - *Thinking Visually* and Arnheim’s *Visual Thinking*)
Visual Capabilities/Thinking and Design of Systems Representations

- For clarity of Communication
 - Using data visualizations and system representations that recognize the human skills in pattern recognition, outliers, comparative visual reasoning, causal chains etc, is essential for effectiveness

- Variety of representations and innovation is constantly needed - this is an important skill (methodology?)
Notes on human capabilities

Physiological and evolution-based

- 150 Million bits at a glance (Tufte 1999)
- *uninterrupted* (local) visual reasoning (Wimsatt 1990)
- object re-identification (Wimsatt 1990)
- outlier recognition/boundary recognition (Wimsatt 1990)
- pattern recognition (Wimsatt 1990)
- understanding/inferring motion (Wimsatt 1990, Marey 1895)
- inferring causal chains (Wimsatt 1990)
Outlier recognition

Redrawn from Tufte 1983 p142

Examples of Visual Representation & Application to Complex Systems

- Categories from the Small-world paper
 - What do they mean?
Examples of Visual Representation & Application to Complex Systems

- Categories from the small world paper
 - What do they mean?

- Minard/Tufte and statistical thinking
 - Review and Discuss the Napoleon March Graphic
Napoleon March 1812-13 to Moscow
- Graphic (by Charles Minard, 1869)
Examples of Visual Representation & Application to Complex Systems

- Minard/Tufte and statistical thinking
 - Review and Discuss the Napoleon March Graphic
- Tufte data visualization: overarching Principles for design
 - Increase the number of dimensions that can be represented on plane surfaces (escaping flatland)
 - Increase the data density (amount of information per unit area)
Guidelines for Excellence in Statistical Graphics (Tufte)

- **Show** the data
- Induce reader to perceive **substance** not methods or “chartjunk”
- Avoid Distortion of data message
- Present **many numbers in small space**
- Make large data sets **coherent**
- Encourage the eye to **compare** different pieces of data
- Reveal several **levels** of data detail
- Serve a relatively clear **purpose** (description, exploration, tabulation, decoration)
- Closely **integrate** with statistical and verbal descriptions of a data set
Discussion of Rosling Video

- Number of “dimensions” or variables

- Possible “new observations” from video (new to you not the world)
Maps and detail

Flow and quantification visualization

Net Primary Resource Consumption ~97 Quads

Electrical imports* 0.08
Nuclear 8.1
Hydro 2.6
Biomass/other** 3.2
Net imports 3.6
Coal 22.6
U.S. petroleum and NGPL 14.9
Imports 24.3

Bal. no. 0.3
Export 1.0
Bal. no. 0.9
Export 2.0

Electric power sector 38.2
Distributed electricity 11.9
Electrical system energy losses 26.3

Residential/commercial 19.6
Industrial 19.0
Useful energy 35.2
Transportation 26.5

Lost energy 56.2

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2002.
*Net fossil-fuel electrical imports
**Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind.

June 2004
Lawrence Livermore
National Laboratory
http://eed.llnl.gov/flow

This image is in the public domain. Source: US Department of Energy.
Map abstractions and layering

Map abstractions and scale

scale: 1 km = 7 pixels

- 1 km
- 1 mi

Courtesy of Neil Freeman. Used with permission.

http://www.fakeisthenewreal.org/subway/index.html
Comparative Map abstractions and scale-Subway Systems

London

New York

scale: 1 km = 7 pixels
- 1 km
- 1 mi

Barcelona

Moscow

DC

Atlanta

Boston

http://www.fakeisthenewreal.org/subway/index.html

Courtesy of Neil Freeman. Used with permission.
Design of Systems Representations
..continued

Details draw the viewer in to the graphic
- convey major point
- provide other information
- add credibility
- suggest questions

There are reasons to compress dimension (*aggregate*) and reasons to show more dimensions (*disaggregate*)

It is often useful to *reference familiar aspects* of the system in image design
U.S. - Japan Investment and defense differentials. Sources: Drawn from gross fixed capital formation and GNP/GDP figures from OECD Economic Outlook, various issues. Military figures from Arms Control and Disarmament Agency and from Stockholm Institute for Peace Research.
Alternatives to disaggregating

Image by MIT OpenCourseWare.

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology
Aggregate – Network complexity

Bell Curve
- Most nodes have the same number of links
- No highly connected nodes

Power Law Distribution
- Very many nodes with only a few links
- A few nodes with large number of links

Image by MIT OpenCourseWare.
Small multiples (Tufte)

Image removed due to copyright restrictions.
Choice of Representation

“The form of a representation cannot be divorced from its purpose and the requirements of the society in which the given visual language gains currency.”

Gombrich 1956
Art and Illusion: Psychology of Visual Perception

The Minard graphic of Napoleon’s march into Russia had what purpose? What did Minard want it to do? Did he succeed?

For holistic systems thinking and/or for a balanced systems perspective, what does this imply?
Systems Thinking and Representation

- **Related parts make up a whole** - graphs, networks, maps and other ways of understanding interconnections and synthesizing wholes

- **Practical application and implications** - Multiple representations of real systems for solution of real problems

- **Relationships and temporal shifts** - Feedback diagrams and patterns, frameworks for seeing interrelationships rather than things

- **Structure and behavior** - Hierarchy diagrams and relationships whose purpose it to highlight emergence and control

- **Much innovation yet needed in these areas**
Systems Representation – Learning objectives

- Explore your own thinking process
- Appreciate the value of Thinking Flexibly
 - Modes-Visual, language and mathematics
 - Levels of thinking...
 - Operations: patterns and matching (accuracy and speed, decomposition and holistic approaches)
- Appreciate the value of effective visual representation for communication and thinking
- Form basis for building skill at Systems Representation and Data Visualization
 - Maps, graphs, matrices, lists, sketches, pictures,
 - What to think about in choosing representations
 - Understand some basic human capabilities
- Examine how Engineering Systems Topics are related to visual thinking and representation
References
