Banach-Tarski: Preliminaries

1 The Theorem

Banach-Tarski Theorem It is possible to decompose a ball into a finite number of pieces and reassemble the pieces (without changing their size or shape) so as to get two balls, each of the same size as the original.

1.1 Warm-Up Case 1: A Line

It is possible to decompose $[0, \infty) - \{1\}$ into two distinct parts, and reassemble the parts (without changing their size or shape) so as to get back $[0, \infty)$.

- Decompose $[0, \infty) - \{1\}$ into: (i) $\{2, 3, 4, \ldots\}$ and (ii) everything else.
- Translate $\{2, 3, 4, \ldots\}$ one unit to the left.

1.2 Warm-Up Case 2: A Circle

It is possible to decompose $S^1 - \{p\}$ into two distinct parts, and reassemble the parts (without changing their size or shape) so as to get back S^1.

- Decompose $S^1 - \{p\}$ into: (i) B and (ii) everything else.
- Rotate B one unit counter-clockwise.
\[B = \{ x \in S^1 : x \text{ is } n \text{ units clockwise from } p \ (n \in \mathbb{Z}^+) \} \]

The first six members of \(B \).

1.3 Warm-Up Case 3: The Cayley Graph

It is possible to decompose (the set of endpoints of) the Cayley Graph\(^1\) into four distinct parts, and reassemble the parts (albeit changing their size) so as to get back \emph{two copies} of the same size as the original.

\[\text{Decompose } C^e \text{ into quadrants: } L^e, R^e, U^e, D^e. \]

\(^1\)A Cayley Path is a finite sequence of steps starting from \(c \), where no step follows its inverse. The Cayley Graph \(C \) is the set of Cayley Paths. \(X^e \) is the set of endpoints of Cayley paths in \(X \).
• Make first copy by expanding R^e and translating left to meet L^e.
• Make second copy by expanding U^e and translating down to meet D^e.

1.4 A more abstract description of the procedure

Notation: if X is a set of Cayley Paths, let \overrightarrow{X} be the set that results from eliminating the first step from each of the Cayley Paths in X.

By the definition of Cayley Paths:

$(\alpha) \quad C = \overrightarrow{R} \cup L$

$(\beta) \quad C = \overrightarrow{D} \cup U$

Since every Cayley Path has a unique endpoint, (α) and (β) entail:

$(\alpha') \quad C^e = (\overrightarrow{R})^e \cup L^e$

$(\beta') \quad C^e = (\overrightarrow{D})^e \cup U^e$

On our two-dimensional interoperation of the Cayley Graph, this delivers the intended result because:

1. C^e is decomposed into U^e, D^e, L^e and R^e (ignoring the central vertex)
2. One can get from R^e to $(\overrightarrow{R})^e$, and from D^e to $(\overrightarrow{D})^e$, by performing a translation together with an expansion.