Non-Computable Functions

1 The Main Result

- We’ll focus on functions $f : \mathbb{N} \to \mathbb{N}$.
- For a computer program to compute f is for it to yield $f(n)$ as output whenever it is given n as input ($n \in \mathbb{N}$).
- **Theorem:** not every function is computable.
 (And I can give you examples!)

2 The Overall Plan

- Turing Machines are computers of an especially simple sort.
- We’ll see that some functions are not Turing-computable.
- But: any function that can be computed using an ordinary computer is also computed by some Turing Machine.

3 Computing functions on a Turing Machine

- Simplifying Assumptions:
 - We’ll focus on one symbol Turing Machines (where the only admissible symbols are ones and blanks).
 - We’ll assume that the tape is only unbounded on the right.
- Turing Computability:
 - M computes a function $f(x)$ if and only if it delivers $f(n)$ as output whenever it is given n as input.
 - M takes n ($n \in \mathbb{N}$) as input if it starts out with a tape that contains only a sequence of n ones (with the reader positioned at the left-most one, if $n > 0$).
4 Coding Turing Machines as Numbers

The Plan
Turing Machine → Sequence of symbols → Sequence of numbers → Unique number

Sequence of symbols → Sequence of numbers

State Symbols: Tape Symbols: Movement Symbols:

“0” → 0 “-” → 0 “r” → 0

“1” → 1 “1” → 1 “*” → 1

⋯

Sequence of numbers → Unique number

Codes the sequence \(\langle n_1, n_2, \ldots, n_k \rangle \) as the number:

\[
p_1^{n_1+1} \cdot p_2^{n_2+1} \cdot \ldots \cdot p_k^{n_k+1}
\]

where \(p_i \) is the \(i \)th prime number.

(Treat any number that doesn’t code a valid sequence of command lines as a code for the “empty” Turing Machine.)

4.1 An example

\[
2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11
\]

\[
\downarrow
\]

\[
2^{0+1} \cdot 3^{0+1} \cdot 5^{0+1} \cdot 7^{0+1} \cdot 11^{0+1}
\]

\[
\downarrow
\]

\[
0 \ 0 \ 0 \ 0 \ 0
\]

\[
\downarrow
\]

\[
0 \ _ \ _ \ r \ 0
\]
5 The Halting Function

• $H(n, m) = \begin{cases}
1 & \text{if the } n\text{th Turning Machine halts when given input } m; \\
0 & \text{otherwise.}
\end{cases}$

For instance: $H(2310, 0) = 0$ and $H(2310, 2310) = 1$.

• $H(n) = H(n, n)$

For instance: $H(2310) = 1$.

6 $H(n)$ is not Turing-computable

• Assume for reductio: Turing Machine M^H computes $H(n)$.

• Construct Turing Machine M^I, which behaves as follows on input k:

 Step 1: Check whether $H(k)$ (using M^H).

 Step 2: \[\begin{cases}
 \text{If } H(k) = 1, \text{ go right forever.} \\
 \text{If } H(k) = 0, \text{ halt.}
 \end{cases} \]

• Informally: What happens when you run M^I on input M^I? It figures out whether it itself would halt on input M^I. If the answer is yes, it goes off on an infinite task; if the answer is no, it immediately halts.

• Formally: $H(M^I) 1$ or 0?

 – Suppose $H(M^I) = 1$. Then (by Step 2) M^I goes right forever on input M^I. So $H(M^I) = 0$.

 – Suppose $H(M^I) = 0$. Then (by Step 2) M^I halts on input M^I. So $H(M^I) = 1$.

• So M^I is impossible. So M^H isn’t computable after all.
7 The Busy Beaver Function

- \(\text{Productivity}(M) = \begin{cases}
 k, & \text{if } M \text{ yields output } k \text{ on an empty input} \\
 0, & \text{otherwise}
\end{cases} \)

- \(BB(n) = \) the productivity of the most productive (one-symbol) Turing Machine with \(n \) states or fewer.

8 \(BB(n) \) is not Turing-computable

- Assume for \textit{reductio}: Turing Machine \(M^{BB} \) computes \(BB(n) \).

- Construct Turing Machine \(M^{I} \), which behaves as follows on an empty input:

 \textbf{Step 1:} Print a sequence of \(k \) ones, for a certain \(k \) (specified below).

 \textit{Result:} \(k \).

 \textbf{Step 2:} Duplicate your string of ones.

 \textit{Result:} \(2k \).

 \textbf{Step 3} Apply \(BB \) to your string of ones (using \(M^{BB} \)).

 \textit{Result:} \(BB(2k) \).

 \textbf{Step 4} Add one to your string of ones.

 \textit{Result:} \(BB(2k) + 1 \).

- Let \(k = b + c + d \)

 - \(b \) = the number of states used in Step 2 (to duplicate)

 - \(c \) = the number of states used in Step 3 (to apply \(BB \))

 - \(d \) = the number of states used in Step 4 (to add one)

 \textit{Note:} since a Turing Machine can output \(k \) using \(k \) states,

 \(\overline{M^{I}} = k + b + c + d = 2k \)

- \(M^{BB} \) is impossible:
– At Stage 3, it produces as long a sequence of ones as a machine with $2k$ states could possibly produce.
– But (as noted above) $M^{I} = 2k$.
– So at Stage 3, it produces as long a sequence of ones as it itself could possibly produce.
– So at Stage 4, it produces a longer string of ones than it itself could possibly produce.

• So M^{H} isn’t computable after all.