Logic – Session 18
Applying our formal semantics

Let I be the following interpretation:
\[\text{UD} = \{a, b\} \quad \text{F} : \{<a>\} \quad \text{G} : \{\} \]

Show that \((\forall x)Fx \) is false on I.

\(\notin I(F) \)

So for arbitrary d, \(<\text{den}_{I,d}[b/x](x)\> \notin I(F).\)

So by (2.), d[b/x] doesn't satisfy Fx on I.

So not: for every u \(\in\) UD, d[u/x] satisfies Fx on I.

So by (8.), not: d satisfies \((\forall x)Fx.\)

So not every variable assignment satisfies \((\forall x)Fx.\)

So by def. of truth, \((\forall x)Fx\) is false on I.
Show: $(\exists x)(Fx \supset (\forall y)Gy)$ is true on I

$(\exists x)(Fx \supset (\forall y)Gy)$ is true on I iff every d for I satisfies $(\exists x)(Fx \supset (\forall y)Gy)$ on I.

By (9.), d satisfies $(\exists x)(Fx \supset (\forall y)Gy)$ on I iff for some $u \in UD$, $d[u/x]$ satisfies $(Fx \supset (\forall y)Gy)$ on I.

By (6.), for some $u \in UD$, $d[u/x]$ satisfies $(Fx \supset (\forall y)Gy)$ on I iff for some $u \in UD$, either $d[u/x]$ doesn’t satisfy Fx on I or $d[u/x]$ satisfies $(\forall y)Gy$ on I.

Prove the RHS.
 So for arbitrary d, <i>d</i><sub>I,d[b/x]\right>(x) \not\in I(F).

So by (2.), d[b/x] doesn't satisfy Fx on I.

So for some u∈UD, d[u/x] doesn't satisfy Fx on I.

So for some u∈UD, either d[u/x] doesn't satisfy Fx on I or d[u/x] satisfies (∀y)Gy on I.

So for some u∈UD, d[u/x] satisfies (Fx ⊃ (∀y)Gy) on I.

So d satisfies (∃x)(Fx ⊃ (∀y)Gy) on I.

We picked an arbitrary d, so every d for I satisfies (∃x)(Fx ⊃ (∀y)Gy) on I.

So (∃x)(Fx ⊃ (∀y)Gy) is true on I.
Show quantificationally true:

\((\forall x)(Rxx \supset (\exists y)Rxy)\)

\((\forall x)(Rxx \supset (\exists y)Rxy)\) is q-true iff it's true on any I.

\((\forall x)(Rxx \supset (\exists y)Rxy)\) is true on any I iff for any I, every d for I satisfies \((\forall x)(Rxx \supset (\exists y)Rxy)\) on I.

Pick an arbitrary I and an arbitrary d.

d satisfies \((\forall x)(Rxx \supset (\exists y)Rxy)\) on I iff for any \(u \in \text{UD}\), \(d[u/x]\) satisfies \((Rxx \supset (\exists y)Rxy)\) on I.

(For any \(u \in \text{UD}\) \(d[u/x]\) satisfies \((Rxx \supset (\exists y)Rxy)\) on I) iff (for any \(u \in \text{UD}\), either \(d[u/x]\) doesn’t satisfy \(Rxx\) or \(d[u/x]\) satisfies \((\exists y)Rxy\) on I.

Prove that the right-hand side is true by reductio.
Suppose RHS is false. Then for some \(u \in UD \), \(d[u/x] \) satisfies \(Rxx \) on \(I \) and doesn’t satisfy \((\exists y)Rxy\) on \(I \).

Pick an arbitrary \(u \) such that \(d[u/x] \) satisfies \(Rxx \) on \(I \).

So by (2.), \(\langle \text{den}_{I,d[u/x][u/y]}(y), \text{den}_{I,d[u/x][u/y]}(x) \rangle \in I(R) \).

So \(\langle u,u \rangle \in I(R) \)

So for some \(v \in UD \), \(\langle \text{den}_{I,d[u/x][v/y]}(y), \text{den}_{I,d[u/x][v/y]}(x) \rangle \in I(R) \).

By (2.), for some \(v \in UD \), \(d[u/x][v/y] \) satisfies \(Rxy \) on \(I \).

By (9.), \(d[u/x] \) satisfies \((\exists y)Rxy\) on \(I \).

\(u \) was arbitrary, for it’s not the case that for some \(u \in UD \), \(d[u/x] \) satisfies \(Rxx \) on \(I \) and doesn’t satisfy \((\exists y)Rxy\) on \(I \).
Since it's not the case that for some \(u \in UD \), \(d[u/x] \) satisfies \(Rxx \) on \(I \) and doesn't satisfy \((\exists y)Rxy \) on \(I \):

For any \(u \in UD \), either \(d[u/x] \) doesn't satisfy \(Rxx \) or \(d[u/x] \) satisfies \((\exists y)Rxy \) on \(I \).

We had:

\[
(\text{For any } u \in UD, \text{ } d[u/x] \text{ satisfies } (Rxx \supset (\exists y)Rxy) \text{ on } I)
\]

iff (for any \(u \in UD \), either \(d[u/x] \) doesn't satisfy \(Rxx \) or \(d[u/x] \) satisfies \((\exists y)Rxy \) on \(I \).

The RHS is true, so the LHS is too.

So for any \(u \in UD \), \(d[u/x] \) satisfies \((Rxx \supset (\exists y)Rxy) \) on \(I \).

So by (8.), \(d \) satisfies \((\forall x)(Rxx \supset (\exists y)Rxy) \) on \(I \).

\(d \) and \(I \) were arbitrary, so for any \(I \), for any \(d \), \(d \) satisfies \((\forall x)(Rxx \supset (\exists y)Rxy) \).

So for any \(I \), \((\forall x)(Rxx \supset (\exists y)Rxy) \) is true on \(I \).