1. Write down a bounded formula whose extension is the set of triples \(<x, y, z> \) such that \(x, y, \) and \(z \) are positive integers and \(z \) is a common divisor of \(x \) and \(y \).

2. Define, for \(F \), a finite set of natural numbers, \(\text{Code}(F) \) to be \(\sum_{x \in F} 2^x \), so that \(F \) is the set of places in the binary decimal expansion of \(\text{Code}(F) \) where 1s appear. Give the Arabic numeral for \(\text{Code}(\{2, 4, 6, 8\}) \).