Implicatures and contradictions: wrapping up (inconclusively)

- Giorgio’s examples: Cases where an assertion p triggers a scalar implicature ~ q despite the fact that p and q are equally informative given common knowledge. This is unexpected if scalar implicatures are derived via Gricean reasoning.

- Suppose that you are a neo-Gricean: could you fight back? How?

- Emmanuel’s idea:

 Let's say that you hear some in a context where it is equivalent to all.

 i) You recognize a scalar item.
 ii) You recognize that it was in an upward monotonic context.
 iii) You then go and inspect alternatives obtained replacing some with a stronger term on the scale.
 iv) all is such a term so you inspect the alternative with all instead of some.
 v) The alternative seems absolutely equivalent so you don't derive any implicature.
 vi) BUT you wonder why the speaker didn't use this alternative because it would have saved you a lot of time, you could have stopped at step 3).

 So in the end, you don't derive an implicature but... you feel that the sentence is somewhat odd (i.e. could have been better!)

- What do you think?

- If we accept that Giorgio’s cases involve an implicature, the following question arises: (from last class)

 Why can’t we cancel implicatures that contradict common knowledge?

Let’s us assume a version of the syntactic account according to which a sentence A that contains a scalar item has two alternative representations, as in 1).

1) (a) \textbf{Exh} (A)
 (b) A

Let’s say (a) is the default structure. But presumably, the structure in (b) would still be available to us. In cases where the structure in (a) denotes a contradiction wrt common knowledge, why can’t we access (b)? Why can’t we recover?
Two moves you guys suggested:

(i) Let’s revise our theory: \textbf{Exh} is always obligatory. (Danny)

(ii) Let’s reconsider the data: We ARE able to recover. (Alan)

(i) The exhaustive operator is obligatory.

2) \textbf{Exh}(A): A is true and all the alternatives to A that are not entailed by A are either false or irrelevant.

[the differences between this def. and the one in Giorgio’s paper are irrelevant at the moment.]

3) The relevance relation satisfies these two axioms

(a) If p and q are equivalent with respect to c. k., then \(R(p) = R(q) \).
 (relevance is closed under equivalence wrt common knowledge)

(b) For any p, \(R(p) = 1 \).

Example 1:

4) A: Who is usually available after dinner?
 B: John is usually available after dinner.

 B is not taken to convey that John is not always available after dinner because \textbf{John is always available after dinner} is not relevant (standard explanation).

Example 2:

5) ? Some parents of the victim got married in 1972

 Given 3), when 5) is asserted, both 5) and 6) are relevant. Given 2), 5) conveys that 6) is false.
(Clash between the intuitive notion of relevance – essentially tied to what the topic of the conversation is – that we need to account for 4) and the axioms in 3)?]

(ii) Cancellation is possible.

7) John assigned the same grade to all of his students. #He gave an A to some of them.

8) John assigned the same grade to all of his students. He gave an A to some of them. Thus, he must have given an A to all of them. (Alan)

We noted that (i) we need an explicit continuation that triggers reanalysis and (ii) this strategy does not seem to be available always:

9) ? Fred lost a nose in the war.

• Suppose that we maintain that Exh is not obligatory and we accept that, at least in some cases, the offending implicature just can’t be cancelled. Is this an insurmountable problem for Giorgio’s proposal?

• Not necessarily. Analogy with garden-path cases:

10) The horse raced past the barn fell.

[reanalysis very very hard. Cf. with 11)]

11) The girl knew the answer to the question was hard.

• We would need to explain why reanalysis is very hard (impossible?) in Giorgio’s cases.
• Can we find other constructions that meet the following conditions: (i) are structurally ambiguous (ii) one structure is preferred over the other (iii) the preferred structure denotes a contradiction given common knowledge (iv) the construction is odd beyond recovery?

Not sure – a case to look at;

12) John showed a picture to every photographer

(forward scope (a> every) preferred – see experiments by Tunstall, Kurtzman & MacDonald, Bader).

Cases where the forward scope denotes a contradiction wrt common knowledge? Examples?