
Chapter 5: Diffraction 
Most of our intuition about light is based on ray or geometrical optical concepts. 
These are based, in turn, on three basic premises: 1) that light “particles” travel 
in straight lines (what we normally think of “rays”) until they hit something, 
2) that when they hit a reflector, the angle of reflection equals the angle of 
incidence, and 3) when they hit a material of different refractive index, part of 
the light reflects (called the Fresnel reflection) and part continues at a different 
angle (measured to the perpendicular) determined by Snell’s Law1. These three 
“laws” account for 99+% of what we see in everyday life, but they are only an 
approximation. When we deal with highly coherent light, such as from lasers, 
diffraction and interference effects become much more prominent than usual. 
These are usually described by wave or physical optical concepts, and are more 
complex and accurate than geometrical-optical concepts. Of course, in the limit 
of low coherence light the two approaches must both agree to within acceptable 
accuracy, and they do. 

A simple experiment will show the limitations of the first premise, that light 
travels in completely straight lines. After this, you will believe that almost 
anything is possible! Consider an undiverged laser beam headed toward a white 
wall; it forms a single spot on the wall, perhaps 2 mm in diameter. Bring a razor 
blade slowly up into the beam, about a meter from the wall; mostly, you will see 
the spot being cut off, going through a half-round phase, and then being 
extinguished as the beam reflects off the solid blade. This is the “geometrical 
shadow” of the blade in the beam. But if you look closely while the blade edge 
is within the beam, you will see a streak of light above and below the 
geometrical shadow of the blade that carries a small percentage of the incident 
light. Now, you might think that the light above the shadow comes from a 
reflection from the razor blade’s edge, as though it were a half-cylinder, but that 
doesn’t explain the dark fringes in that light, and it certainly doesn’t explain the 
light found below the shadow, which seems to veer around the edge as though 
deflected by some strange attractive force. If you put your eye in the streak (be 
careful to avoid the straight-through beam!), you will see that the light comes 
only from the edge of the razor blade. 

This “non-straight-line” behavior of light is a simple wave-optical phenomenon 
called diffraction.  An explanation was first offered by Huyghens around 1678 2. 
He said that it was reasonable to consider air (and also vacuum) as a volume 
filled with imaginary spheres, like closely packed marbles, and that light was 
like a “nudge” from one of those spheres, which would nudge all the adjacent 
spheres, which would nudge all their neighbors, and so on and so forth 
(something like a pan full of “klackers”). If a sphere was equally nudged by 
neighbors to the left, left-up, and left-down, it would move to the right (a vector 
addition of the nudges), and nudge only that neighbor. Thus a wide nudge wave 
would propagate in a single direction. But, if a wall is stuck in among the 
spheres, a sphere just to the right of the top of the wall gets no nudges from 
below, and thus gets a net downward nudge from what is left of its neighbors. 
Thus a nudge starts propagating downward and forward into the “shadow” that 
should be cast by the wall. The story was fleshed out by Fresnel in the 1820’s 3. 
He proposed that the nudges were periodic and even sinusoidal. Thomas Young 
had earlier anticipated some of the implications of periodicity, and argued that 
the “nudges” were actually side-to-side vibrations (lateral, not longitudinal 
excitations) of the medium 4. Maxwell then showed (in the 1870’s) that these 
are lateral oscillations of coupled electrical and magnetic fields. It is all a 
fascinating story about the slow overcoming of a set of very strongly held 
beliefs in the particle theory of light established by Isaac Newton in the early 
1700’s, and I recommend browsing a book like Ronchi’s The Nature of Light for 
more of that history 5. 
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Diffraction by periodic structures: 
For discussing holography, we will concentrate on diffraction effects caused by 
repetitive or periodic structures, such as evenly-spaced slits in an opaque screen 
(like a picket fence). We usually describe these by a transmittance function, 
t(x,y), and periodicity in the x-direction with spacing d means, in mathematical 
terms, that t(x-md,y) = t(x,y), where m is any integer. Note that, because light 
will generally be moving from left to right across the page (for a while, at least), 
along the z-axis, the x-axis is drawn vertically here, as it will be in most of our 
sketches. For these examples, there will be no y-dependence of the 
transmittance pattern. 

When an undiverged laser beam hits such a periodic structure, it breaks up into 
several laser beams deflected upwards and downwards by multiples of a certain 
angle determined by the spacing and the wavelength of the light. Actually, the 
trigonometric sines of the angles are multiples of the sine of a certain angle, up 
to the limit of ±1.0. The relationship is described by the simple form of the 
diffraction equation (which we will soon have to prove): 

λ 
, ±sinθout,m = m sinθ+1 = m , m = 0 1, ±2,…  . (1)

d 

Single-slit diffraction: 
The situation is actually more complex than it might seem at first glance. Even 
if the laser beam goes through an empty frame, it eventually starts to diverge, to 
expand at some constant diameter increase per distance, which is to say that it 
diverges with some constant angle, θdiverge. Even if the wavefronts are carefully 
collimated when they come out of the laser, by some distance downstream they 
will have become spherical, diverging from a point at the front of the laser. This 
is all due to the fact that the laser beam is like a uniform and infinite plane wave 
that has suddenly passed through a circular aperture or window in order to get 
out of the laser. That constriction at one end causes the beam to spread out at its 
other end, and the smaller the constriction width, W, the larger the angle of 
divergence, θdiverge. This effect is called single-slit diffraction, although in this 
case the “slit” is a smoothly tapering circular aperture, producing a beam with a 
Gaussian intensity profile (uniquely, the beam remains Gaussian as it diverges!). 

If the beam from the laser passes through a nearby diffraction grating, all of the 
downstream orders eventually start to expand, and all with the same divergence 
angle. Thus the downstream spot pattern evolves at a large enough distance into 
a pattern that no longer changes shape, but only expands uniformly with 
distance. That pattern is called the Fraunhofer, or far-field diffraction pattern6. 
Within some distance (the “far-field distance,” naturally), the diffraction is 
characterized as Fresnel or near-field diffraction. That pattern changes 
mysteriously as a function of distance, generally requiring mathematical 
techniques that go beyond the scope of this course. As we approach the grating 
itself, we expect to see the geometrical shadow of the grating emerge. But not 
far downstream from there, we also find a negative image of the grating pattern! 

The use of lenses: 
It is inconvenient to traipse far down a hallway to look at far-field diffraction 
patterns, so we often use lenses to bring them into focus at much closer 
distances. First, imagine that a microscope objective has been attached to the 
laser to produce a point source of diverging spherical waves. A first lens is 
then placed its own focal distance away from the point source, so as to produce 
collimated or plane wavefronts. Then comes the grating, which breaks up the 
incident plane wave into a series of plane waves at various angles. Then comes 
a second lens, which causes each of those plane waves to curve inward toward 
a focus one focal length behind the lens. If we put a white cardboard screen 
there, we will observe the same pattern that would appear in the far field of the 
grating, except scaled down in the ratio of the focal length to the distance to the 
far-field pattern. 
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From a wave- optical point of view, a lens simply multiplies the amplitude of 
the wavefront by a factor that varies as the square of the distance from the center 
of the lens (it is a complex phase-only multiplication, which adds a phase that 
varies as r2). The diffracting pattern also produces a multiplication of the 
wavefront, often by an amplitude-only function of x and y, and the second lens is 
again a phase-only multiplication. Now, because the results of these 
multiplications are invariant under interchange (or commutation) of the 
operations, it doesn’t matter which happens first, or second, or third. Also, the 
effect of two lenses being exactly in tandem is the same as for a single lens of 
twice the thickness variation. So, all three of the sketched optical setups 
produce the same intensity pattern in the back focal plane of the lens! 

Viewing diffraction patterns with the eye: 
An important outcome of this discussion is the realization that the naked human 
eye can also be used to view diffraction patterns. If a point source of light is 
viewed in sharp focus, then a grating placed just in front of the eye will produce 
a “far field” diffraction pattern on the retina, which will appear as an array of 
spots in the same plane as the point light source, surrounding it like a halo. This 
is very useful for “quick and dirty” checks of diffraction theory with materials at 
hand. 

Styles of diffraction analysis: 
“Every problem in optics becomes easy if you look at it the right way,” the old 
maxim goes, and there are dozens of ways of looking at diffraction and trying to 
understand its effects. We will take a passing glance at two very different 
approaches, and then simply accept the mathematical rules that result without 
many further questions. There are plenty of other books to refer to for other 
approaches, so be sure to hunt for one that appeals most to your sense of 
physically-reasonable explanations if you have further questions. They are all 
simplifications in one sense or another, as even the most basic problem in 
diffraction (by an opaque single edge) is not yet completely solved! 

Graphical analysis: 
Here, we will look at the addition of contributions to the far-field intensity 
pattern as more and more equally-spaced narrow slits are opened, showing that 
the pattern converges to a series of distinct spots in the limit of many, many 
slits. First we consider the contribution of a single isolated slit. As that slit 
narrows to an idealized line source, the transmitted wavefront  becomes an 
idealized cylindrical wave with an amplitude that is equal in all directions (there 
may be a gradual cosine-theta falloff, which we will ignore). Now the question 
is: what happens if we open an identical slit parallel to the first and separated by 
a distance “d”? We consider, for simplicity’s sake, the geometry shown here, 
with the slits one focal length of the lens (called “F”) in front of the lens, and the 
observation plane one focal length behind the lens, so that parallel “rays” can be 
considered wherever possible. 

Two-slit diffraction, one at a time: 
Here we show the wave from the lower slit only; the wave from the upper slit 
will be symmetrical. Let the two slits be at equal distances from the z-axis, at 
+d/2 and -d/2, so that their equal contributions will arrive IN phase at x=0 in 
the back focal plane of the lens. First we open the lower slit by itself. We 
want to know the location, x=D, at which the wave from the lower slit will be 
exactly one-half cycle out of phase with (lagging behind) its value at x=0 

λ
D sinθ = ,

2 

D sin tan−1 d / 2  =
λ 

, (2)
 F  2 

F
D ≈ λ . 

d 
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–d/2 

D 

F F 

θ 
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That is, the lower slit emits a cylindrical wave that the lens transforms into a 
tilted plane wave with an angle θ = tan-1(d/2F) ≈ sin-1(d/2F). This creates a 
phase increase of φ = 2π (x/λ) sinθ  in any plane behind the lens, including the 
back focal plane at F. The distance D then follows from π= 2π (D/λ) sinθ , 
giving our result, D ≈ λF/d. 

Two-slit diffraction, two at a time: 
Now we open the upper slit too. The two plane waves overlap, and are in-phase 
along the z-axis (at x=0) because of symmetry. Because the waves are equally 
but oppositely tilted, they become increasingly out of phase as x increases, until 
they are so far out of phase that they are back in phase again (the wavefronts 
cross peak over peak). The height at which the phase difference between the 
waves from the two slits is 2π is given by D = λ/ sinθ. Note that the phase 
difference (and thus the interference pattern) is independent of the distance 
along the z-axis, but we will stay at the z=F plane for this discussion. 

As the observation location moves between 0 and D, the waves from the two 
slits arrive increasingly OUT of phase, with the phase difference, φ1-φ2, passing 
π radians or 180° at D/2and continuing on the way to being 2π radians or 360° 
out of phase, which is back IN phase, at x=D. The phase difference is a linear 
function of the height in the back focal plane. Thus the intensity of the 
interference pattern formed by the two equal-intensity waves varies according to 
our familiar “interference equation,” 

+d/2 

–d/2 

D 

F F 

xItotal ( )  = 2 I0 

1 + cos  2π 

x 
 . (3)

  D 

As the observation location moves onward from D to 2D, the phase difference 
further increases from 2π to 4π, and the cosinusoidal fringe pattern continues 
through equally-spaced maxima and minima until the angles become so large 
that our paraxial approximations break down. 

If we look below the axis in the back focal plane, the same phase variation 
happens, but with the opposite sign. Thus the cosinusoidal pattern extends for 
many cycles above and below the axis, producing a series of parallel bright 
“fringes” in the x-y plane that look a lot like furrows in a plowed field. 

The pattern we have been talking about is usually called “Young’s double-slit 
fringes,” honoring their first explanation by Thomas Young in 1801. Young 
based his arguments for the wave theory of light on those patterns, leading to the 
work of Fresnel and Maxwell, and finally overcoming hundreds of years of 
domination by Newton’s particle theory. For us, they are also the building 
blocks of a theory, this time of holographic imaging! Fortunately, we don’t 
have to contradict any giants in the field; Gabor, Leith, and Denisyuk have all 
agreed with these ideas about waves and light, especially where lasers are 
concerned. 

Multiple-slit diffraction, N at a time: 
The really interesting part begins when we introduce a third slit, spaced a 
distance d above the first slit. There are now three interference patterns formed, 
one for every possible pair of slits, and one of those patterns (between the first 
and third slits) has two intensity maxima between zero and D on the x-axis. 
And, one of those maxima is centered at x = 0, right on top of the maximum 
formed by the first two slits.(and on top of the maximum formed by the second 
and third slits). That is, every pair of adjacent slits produces a pattern that has a 
maximum at 0, D, 2D, and so forth, but the patterns that are formed by slits 
further apart have other maxima in between. The sum of all the patterns has 

=principal peaks that are much narrower than for the two-slit pattern, with a D F  tanθ+1 
weaker “secondary maximum” in between. λ 
As even more equally-spaced slits are opened above and below the first two 

sinθ+1 = 
d 

= λ ⋅ f


slits, further components of the intensity pattern are introduced. We state

without proof that the interference pattern formed by even more slits is equal to

the interference patterns formed by all possible pairs of the slits, minus a
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constant equal to the sum of the intensities of the individual slits7. The pattern 
from the furthest-apart slits (let’s say that they are N·d apart) has the finest 
fringes, with N-2 maxima between 0 and D. As more and more slits are opened, 
and further fringe patterns are added to the overall pattern, the overall intensity 
pattern converges to a characteristic shape, with principal maxima that are N2 as 
high and 1/N as wide as for the N=2 case, and with N-2 smaller maxima in 
between. As N becomes a few hundred, the light concentrates almost entirely in 
the peaks, one right on axis and others spaced equally up and down on the 
output plane, separated by the distance D. 

A mathematical proof of the properties of diffraction gratings is certainly in 
order here, but we will save our effort for a different approach. Various 
analyses can be found in optics textbooks that emphasize one or another point of 
view. For the time being, let’s explore the general properties we have described 
so far. 

The grating can be considered as an optical component that breaks an incoming 
plane wave into a set of outgoing plane waves at roughly-equally-spaced angles, 
a “fan” of beams or rays. The amount of energy in each member of the fan of 
beams depends on the details of the shape of the grating slits, whether they are 
hard-edged or soft-edged, or just slow down the wave a bit. But the angle of 
deflection of each component of the fan depends only on the spacing of the slits, 
and that is the aspect that we will explore in this chapter. 

The grating equation: 
The previous discussion showed that an incoming plane perpendicular to the 
grating results in one plane wave angled up at an angle “theta” (θ) given by 
sin(θ) = λ/d, and another wave angled downward by the same angle, at -θ. And Diffraction patterns 
above and below those are more waves deflected by larger angles, given by produced by 2, 
sin(θ) = ±2λ/d.  If the slits have a suitable shape, much larger deflection angles 3, 4, and 5 slits. 
(up to 90°) can be produced. We describe these beams as various “orders” of 
deflected or diffracted waves, with the “first order” beams being those closest to 
the straight-through or “zero order” beam. The next set, if those beams exist at 
all, are the “second order” beams, and so forth, through the third, fourth, fifth, 
and higher orders. 

To begin, let’s look at the on-axis grating equation, which describes what 
happens to a plane wave that comes in perpendicular to the grating. A “fan” of 
plane waves emerges, consisting of pairs of waves deflected or diffracted 
through equal but opposite angles. These angles are given by the first or “on-
axis” form of the grating equation: 

λ
sinθout, m = m 

d
 , (4) 

where m is the “order number” of a particular beam of interest. The relationship 
breaks down when the sine of the diffracted angle goes beyond unity (for 
sufficiently large m, for example), and there is no wave that propagates 
corresponding to that order. Instead, a so-called “evanescent” wave leaks 
slightly to the right of the grating, turns around, and re-enters the grating to 
contribute to the specularly reflected light. 

One of the most important observations from the grating equation is that long-
wavelength or “red” light is deflected through a larger angle than mid-
wavelength or “green” light, which is in turn deflected through a larger angle 
than short-wavelength or “blue” light. This qualitative fact is important to 
remember in more complicated situations too, and one mnemonic for it is to 
remember “the three Rs”: “Red Rotates Radically!” Landscape paintings 
occasionally show upside-down rainbows, and holographer’s sketches 
sometimes show upside-down spectra! So it is important to have an easy way to 
remember which way is “up” in diffraction. 

Spatial frequency: 
We have been describing diffraction gratings so far in terms of their repeat 
distance, d, which gives a kind of concreteness to the discussion. However, 
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from now on we will almost always describe them instead in terms of their 
“spatial frequency” in cycles per millimeter. This allows the analogies with 
temporal frequency in electrical engineering to become more obvious, and we 
describe the spatial frequency by the variable f = 1/d. We can also include the 
orientation of the grating by letting f become a two-dimensional vector, f, 
oriented perpendicularly to the grating’s grooves, with magnitude f = |f| = 1/d. 
However, the orientation of the grating will always be clear in our discussions 
(in the x-direction, unless otherwise noted), and we will try to stick with the 
scalar f wherever possible, in the spirit of “shop math” calculations. 

Grating frequency, ray trace (5 orders): 
As an example, let’s consider a grating of spatial frequency f = 450 cycles/mm, 
or d = 2.2 µm. A He-Ne laser beam (λ = 633 nm) incident at θ = 0° produces 
seven output beams: θ0 = 0°, θ±1 = ±16.5°, θ±2 = ±34.7°, θ±3 = ±58.7°, 
θ±4 = evanescent. 

Off-axis grating equation: 
When the incident beam comes in at an angle to the perpendicular, the output m=+1 
fan of beam roughly follows it around, staying centered about the continuing 
beam—but upon closer look the angles between some of the beams increase and 
others decrease, sometimes significantly. Also, some beams may try to come 
out at angles beyond 90°, becoming evanescent in the process, and others may 
“emerge” from the grating on the other side of the beam fan. The details are 
described by the “off-axis grating equation” below, in which θin is the angle of 
the incident beam normal to the grating perpendicular, as shown in the diagram. 

θin 

m=-1 

m=0 

z 

λ
sinθout, m = m

d 
+ sinθin  . (5) sinθout, m = m ⋅ λ ⋅ f + sinθ in 

Or restated in spatial frequency terms, 

sinθout, m = ⋅ λ ⋅ f + sinθin  . (6)m 

We will “prove” this relationship in combination with an interesting result in 
diffraction theory in the next section. 

Diffraction by a sinusoidal grating: 
Our arguments for physical reasonableness have been built on a model of the 
grating as a series of narrow slits, with assurances that the angles depend only 
on the spatial frequency of the slits and not on their width or other properties. 
Now we will examine this premise for a special kind of slit, one that attenuates 
the wavefront according to a smoothly varying (specifically, sinusoidal) 
function. Such a pattern might be produced by exposing a piece of photo film to 
a two-beam interference pattern, for example. 

Transmittance of a grating: 
We describe the sinusoidal transmittance pattern of the grating/film as 

atamp (x, y) = +  b cos(2πfx)  , (7) 

where tamp is the ratio of the amplitude of the electric field of the light wave just 
after and just before the grating. That is, at every point, 

x y x yEout ( ,  ) = tamp(x, y) ⋅ Ein ( ,  )  . (8) 

Note that in photography we usually consider the transmittance of the intensity 
of the light wave (or its negative logarithm, the optical density), which would be 
the square of the amplitude transmittance we are considering here (a point to 
consider when attempting to measure transmittances directly). If we assume that 
the amplitude transmittance must always be between zero and unity (a non-
amplifying medium, you might say), there are limitations on the size of a 
compared to b; for example: 

0 a b  ≤ 1 
. (9)

0 a b  ≤ 1 
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In a more elaborate view of amplitude transmittance, the phase of the output

wavefront can also be manipulated, leading to the description of the amplitude

transmittance by complex numbers. For example, if the wave is delayed by one-

half of a cycle, the amplitude transmittance is effectively minus one. Further

discussion will be deferred to the chapter concerning the diffraction efficiency of

such gratings; the physical principles can be illustrated by positive-real

amplitude transmittances.


Effect of illumination:

The grating is illuminated by a plane wave inclined at an angle, θin, as shown in

the sketch. The mathematical description of that wave is, as shown in Chap. 2,

Eqns. 2 and 11, where now z=0 at the observation plane:


 2π E x y, t) = sin
 
2πνt − x ⋅ sinθin 

 . (10)in ( ,  
λ 

The output wave is then simply given by 

Eout ( ,  x y t  x yx y, t) = Ein ( ,  , ) ⋅ tamp( ,  ) 

(a= sin
 
2πνt − 

2π 
x ⋅ sinθin 

 ⋅ +  b cos(2π f x)) . 
(11) 

λ 

Application of a familiar trig identity, 

sinα ⋅ cos β = 
1 [sin(α + β) + sin(α − β)]  , (12)
2 

to the product provides the output wave as the sum of three components: 

 2π Eout ( ,  ax y, t) = ⋅  sin
 
2πνt −

λ 
x ⋅ sinθin  

+ 
b 

sin
 
2πνt −  2π 

x ⋅ sinθin + 2πfx 

 (13)

2   λ  

+ 
b 

sin
 
2πνt −  2π 

x ⋅ sinθin − 2πfx 

 . 

2   λ  

We identify these (by phase-footprint inspection) as three plane waves, which 
we distinguish by order number m equal to zero, plus one, and minus one: 

 2π Eout ( ,x y, t) = E0 sin
 
2πνt − x ⋅ sinθ0 λ 

  2π  
+ E+1 sin 2πνt −

 λ 
x ⋅ sinθ+1

 (14)
 

  2π  
+ E−1 sin 2πνt −

 λ 
x ⋅ sinθ−1

 . 
 

where the output angles are given by 

sinθ0 = sinθin , θ0 = θin , 

sinθ+1 = λf + sinθin , (15) 

sinθ−1 = −λf + sinθin . 

This motivates/justifies the generalization of the grating equation to the off-axis 
case: 

sinθout,m = m f  + sinθin  . (16)λ 

However, a more far-reaching observation is that the amplitudes of the two first 
orders of diffracted waves are b2/4, and those of all the higher order waves are 
zero! That is, a purely sinusoidal transmittance grating diffracts light only into 
the first orders (and the zero or “straight-through” order). More complex 
gratings (such as slit-like gratings) will diffract light into many orders, but these 
gratings can be thought of as combinations of mathematically-simpler sinusoidal 
gratings, each having a frequency that is a multiple of the first-order frequency, 
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and each giving rise to a single pair of diffracted orders. This is equivalent to 
analyzing the complex transmittance pattern as a Fourier series, which has led to 
a whole new field of optical theories based on communication theory. 

Conclusions: 
What happens when light hits a picket fence structure (that is, a “grating”) is 
truly amazing, and raises all kinds of doubts about our real-world physical 
intuition. Suppose we let the light trickle through one photon at a time? Which 
direction does an individual photon take? Such questions are the meat of 
quantum physics courses, and this is a classical optics course, so shelve them for 
now and try to learn to accept the rules described by the equations we have 
proven. 

What happens? The beam breaks up into a number of distinct beams that go in 
very distinct and well-defined directions given by the “grating equation.” That 
equation involves the “spatial frequency” of the grating (in cycles per 
millimeter, analogous to the cycles/second of radio and TV signals) and the 
trigonometric sines of all the angles involved. Luckily, the sine is nearly a linear 
function of the angle, for small enough angles, and we can get a fairly simple 
general idea before relegating the calculations to a computer program. 

The amount of energy in the various beams is another interesting story that will 
occupy an entire chapter of its own. Suffice to say that the simplest type of 
grating to analyze is a sinusoidal variation of transmittance between zero and 
unity, and it sends all its light into the plus and minus first orders, plus the 
straight-through zero order (and light absorbed in the grating). None of the 
possible higher orders are stimulated! Enter Fourier… 

Soon it will be time to combine the stories of interference and diffraction to 
learn about “holography,” after a digression about how much light goes into 
these various beams. 
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