Chapter 6: The Diffraction Efficiency of Gratings

For most of our discussions in this course, we will be worrying about where the
light goes. But every once in a while, we have to worry about how much light
gets there too. After all, no hologram means much if it is so dim that no one can
see it! This brings us to the subject of diffraction efficiency, what determines it,
and how it might be maximized.

We begin by considering the diffraction efficiency of a few simple gratings, for
the cases of absorbing and phase-retarding gratings (unbleached and bleached
holograms), gradually developing some general rules. This chapter can offer
only a very preliminary pass at understanding the theoretical underpinnings of
the brightness and contrast of holographic images, but it will be a good start!

Thin Gratings:

At the outset, we have to add that all of this chapter’s remarks will be limited to the thickness parameter :
“thin” gratings and holograms. That is to say that the thickness of the 27 (A hickness
diffracting structures is small enough, compared to the grating spacing, d, and Q=—©p5—— 1
that angular selectivity effects (the Bragg angle effects') are not significant. nld” [dosfy

This situation is often described by the “thickness parameter,” Q (which is also a
function of the incident illumination angle, 6y, and the wavelength, A) being
much less than unity (strong modulations of absorption or refractive index can
also increase the apparent thickness of the grating). If the hologram thickens,
the diffraction efficiency generally increases when it is properly angled, but the
theories describing these conditions become very complicated. We will visit
this special domain when we talk about reflection holograms, later in the term.

Definition of Diffraction Efficiency

Usually, we mean by diffraction efficiency (designated as DE41, or n4+1 “eta -
plus-one”) the ratio of the intensities of the desired (usually the plus-first order)
diffracted beam and the illuminating beam, measured when both beams are large
enough to overfill the area of the detector being used. We ignore any power
losses due to reflections at the surfaces of the grating or hologram; practical DE
measurements also take these surface reflections (approximately 4%/surface, for
uncoated glass) into account. This chapter’s simple mathematical models
overlook polarization effects, large-diffraction-angle effects, and many other
subtleties of rigorous electromagnetic theory, but their conclusions can generally
be extended into those domains by more detailed math, so these results serve as
useful guides nonetheless.

The local intensity of a beam of light is proportional to the time-average of the
square of the magnitude of its electric field. Thus the ratio of the intensity of the
output and input beams is equal to the square of the magnitude of the electric
field transmittance of the hologram. Because the output field consists of several
beams that eventually separate, we are interested in accounting for them one by
one. That means breaking the transmittance pattern down into components that
correspond to each of the beams. Finding the amplitude of those transmittance
components is the principal concern of the rest of this chapter.

Transmission Patterns

We describe a grating or hologram by its two-dimensional transmittance pattern.
By transmittance we mean the ratio of the electrical wave fields just after and

just before the grating at the same x,ylocation. In the simplest case, the wave is
simply attenuated, so that its electric field amplitude diminishes. This is called

an amplitude transmittance grating.

Note that this is not the transmittance that one might usually think of measuring tamp (X, Y) = Eou(xy)
with a photographic light meter, because a light meter responds to the intensity Ein(x,Y)
of a beam, which is proportional to the square of the wave amplitude!

_pll_



In so-called coherenbptical systems (where the illumination is monochromatic
and from a point-like source, generally from a laser), the delays that a wave
encounters in passing through a grating are also very important. For example, if
they are great enough to retard the wave by half a cycle in some places, then
those waves would cancel out waves from other parts! Retarding effects are
described as variations of phase transmittance, with the amount of delay being
measured in degrees or radians, or sometimes in terms of wavelengths (or
fractions thereof). Phase delays can be caused by variations in either the local
microscopic thickness of a grating (with the phase increasing with increasing
thickness) or the local refractive index, n, or both.

Usually, amplitude and phase transmittance variations, or modulations, are
linked together in practical cases, but it is useful to first think of them as
separate cases, with unbleached holograms being amplitude-only gratings, and
bleached holograms being phase-only gratings.

For this discussion, the modulation patterns will vary with x only; that is, the
patterns will be horizontal, with the “furrows” extending out of the page. The
attenuation or phase delay variations of the pattern will be described as a graph
and/or as an analytical expression, such as shown here. A few simple cases can
help us find guidelines that will predict the behavior of a wider variety of
holograms. However, true speckley-object-beam holograms (such as of 3-D
objects) have a random transmittance pattern that requires a more complex
analysis. The patterns we are talking about now are for “gratings” that have no
randomness—images of single points, in effect.

Sinusoidal transmittance grating:

Here, the amplitude-only transmittance is a perfectly-smoothly-varying
sinusoidal function of position, an ideal simplest case. Such a pattern could be
produced by a low-contrast interference pattern exposure, for example. The
most striking geometrical property of diffraction by such a grating is that there
are only two output beams, the m= +1 and m= -1 orders, on either side of the
straight-through m= 0 beam. In the far-field pattern, we see only one spot of
light on each side of the zero-order beam for each sinusoidal component of the
grating’s amplitude transmittance; it acts as a kind of Fourier transformer! This
property can readily be proven by matching the amplitudes and phases of sets of
waves on both sides of the grating (boundary condition matching).

The intensity of each of the m= +1 beams varies as the square of the amount of
swing of the sinusoidal modulation, and is given by the formula to the right.
Because the transmittance has to stay between zero and one, the maximum value
of At is 0.5 (only possible if tg=0.5 also), and the maximum value of the

diffraction efficiency is then 6.25%. Four times that amount emerges in the
straight-through beam, and the rest is absorbed in the grating, gently warming it.
This low maximum DE is not very encouraging for the brightness of display
holograms! Unbleached holograms can be bright enough to be impressive under
controlled lighting conditions, but it is usually quite difficult to consistently
produce the maximum possible diffraction efficiency.

Square-wave transmittance grating

Often, there are non-linearities in the exposure response of photographic
materials that distort the purely sinusoidal nature of a transmittance pattern, in
much the way that “fuzz boxes” can distort electrical guitar sounds. An extreme
is a “hard-clipped” sine wave, which we will refer to here as a square wave or
“squared-up sine wave” (that is, it is “high” 50% of the time, and “low” the
other 50%) denoted as sg-sin8 (unpronounceable).

Such a grating can be considered as a summation of many ideal sinusoidal
gratings, one with the same period as the square wave, and then gratings with
integer fractions of that period (or multiples of that spatial frequency—the
“higher harmonics,” one might say). Each sinusoid diffracts two beams of light,
so that many points of light now appear in a straight line alongside the straight-
through beam. But in spite of the energy going into the extra beams, the first-
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order beams are brighter than before! This is because the “fundamental
sinusoidal component” of a square wave has a magnitude that is larger than the
magnitude of the square wave itself by a factor of 4/1t So, we get transmittance
values greater than unity and less than zero for that particular grating
component, a physical paradox.

The application of Fourier theory produces these predictions of the diffraction
efficiency: more light in the first order image, by 62% (when At = 0.5) giving
over ten percent diffraction efficiency, plus some higher orders. Note that there
are no even orders though; this depends on the grating being exactly 50/50
open/closed. Where does the extra total energy come from? Only one-half of
the grating is dark, in the highest DE (black/clear) case, and therefore only 50%
of the total energy gets absorbed, versus 62.5% in the sinusoidal case. So, it
looks like non-linearities can work to our advantage! Unfortunately, in more
complex images non-linearities produce noise images that strongly degrade the
desired image.

Square-Wave Phase Grating

One reason for dwelling on the square-wave grating is that it offers a good
introduction to simple phase-only gratings. Such gratings work by retarding the
wavefronts as a function of position, and the results are hard to analyze for most
modulation shapes. But if the grating comprises only two phase levels, such as
0 and T, the results follow from the same analysis used for square-wave
amplitude-only gratings.

Phase-only gratings absorb no light energy, so that the total amount of diffracted
light can reach 100% when summed over all the orders. The modulation
possible for the fundamental transmittance component becomes twice what it
was in the amplitude-only transmission case, ranging from +1 to -1 in effect
(when Ag = 11/2), so that the maximum diffraction efficiency can quadruple to
over forty percent!

Sine-Wave Phase Grating

Now we will come almost full circle, from sinusoid to square and back: the
depth of the phase-retarding structure varies smoothly, exactly as a sinusoid (the
refractive index might vary sinusoidally instead, which is more common in
bleached holograms). This turns out to be one of the few cases where the
diffraction efficiency can be calculated analytically without much trouble, even
though the link between phase and complex transmittance becomes highly
nonlinear for only moderate modulations. For small phase modulations, the
results should resemble those for sinusoidal amplitude gratings, although the
phases of the first-order diffracted waves are different by 90° from the
unbleached case (which hardly ever matters).

The diffraction efficiencies are expressed in terms of zero- and first-order Bessel
functions of the first kind, which are a lot like cosine and sine functions except
that they damp down for large Ag, are not strictly periodic, and the maxima of
J1 do not lie at the minima of Jy. Nevertheless, the general behavior is as

expected: as the modulation increases the zero-order beam weakens and the
first-order beams strengthen to a maximum DE of 33.8% (when A@= 0.5911)
Because a sinusoidal-phase grating is a distorted sinusoid in amplitude
transmittance terms, higher order beams begin to appear too, each described by a

higher-order Bessel function, J,;2(A¢). For a more detailed look at this question,
see the Collier, Burckhardt & Lin book 2.

Generalized Gratings

If the transmittance variation is neither smoothly sinusoidal nor step-wise
constant, the diffraction efficiency can be difficult to compute even within the
limited accuracy of this simple thin-hologram approach. However, there are a
fewthings we can say in general that help tie the just-previous results together,
and extend them in interesting ways toward image holograms. These ideas are
simple to comprehend for amplitude gratings, a little harder for phase-only
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gratings, and the general mixed case requires a lot of dabbling in the unit circle
of complex variable mathematics.

The fraction of the optical power transmitted at each point of the grating is given

by the magnitude-squared of the amplitude transmittance at that point, or

lt(x,y)P- That power finds its way into the variously diffracted beams, so that the

first number we can find is the sum over all the orders, including the zero order,

of the diffraction efficiencies. DEq=q = |tav |2
= 9

The amplitude of the zero-order beam by itself is given by the average of the

transmittance over the entire hologram area, which we call t (this was tg in the > DEy = |t(X)|2 -DE; = |5t(x)|2
mz0

previous amplitude-only examples; in general, it is a complex number, toei@). )
The power in the zero-order beam is the magnitude-squared of that average, or = vart = oy
to? in this case.

The difference between the total diffracted power and the power in the zero-order beam must be the total power in
all the diffracted beams! If the transmittance is a constant over the hologram area, then the average of the square of
the magnitude of the transmittance will be equal to the square of the magnitude of the average transmittance, and the
diffracted power will be zero, as expected. If the transmittance fluctuates as a function of position, diffraction
begins. The difference between the average of the magnitude-squared and the magnitude-squared of the average is
termed the varianceof the random fluctuations, or the square of their standard deviation.This is equal to the sum of
the diffraction efficiencies in all the orders!

Telling how much power goes into any specific order, and into the m=+1 order in particular, is trickier. If the
fluctuating transmittance pattern can be decomposed into various spatial frequency components, then the variance
can be interpreted as a sum over a power spectrum, where each component of the power spectrum corresponds to the
power in one diffracted order (an application of the Wiener®-Khinchine theorem of communication theory). That
precise decomposition required finding the Fourier transform of the transmittance fluctuations, which is beyond the
scope of this discussion.

There are some interesting special cases, though. For example, can you think of a transmittance pattern that diffracts
all of the light into one of the first-order beams?

Thick Gratings

All of the above discussion assumes that the modulation of the grating has been crammed into a layer that is
infinitely thin. In real holograms, the emulsion is several wavelengths of light thick (silver-halide emulsion
thickness of 5-7 um is typical), and the modulation is spread over fringe surfaces that are wide enough to act
something like mirrors—that is, they may diffract light more into the +1 order than the —1 order, or vice versa. This
angular selectivity is usually called the “Bragg effect,” and its analysis would take us far beyond the mathematical

scope of this course . In general, the trend is to increase the diffraction efficiency of one beam at the expense of
the others, and to make the hologram quite sensitive to its angle to the illuminating beam. Volume reflection
holograms, described in later chapters, are at the opposite extreme, where the emulsion layer is considered as being
extremely thick in the simplest case.
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