
Chapter 2: Light as Waves 

What we think of as “light” is actually a ripple-like disturbance of combined 
electrical and magnetic fields (in the so-called “classical” or “non-quantum-
mechanical approximation). As such, every good optics book dutifully begins 
with a discussion of Maxwell's equations, which can also be widely found on 
T-shirts around MIT1,2,3. The electric (and magnetic) fields are vectors, E and 
H respectively, indicating the directions between lower and higher electrical and 
magnetic potentials. Everything follows from these mathematical elaborations 
by James Clerk Maxwell of observations by Michael Faraday, that there is a 
coupling of the spatial variations of one of the fields (denoted by the “curl” or 
“div” of its vector) and the time variation of the other field, and vice versa (the 
first two equations). Either field may be stimulated—by a temporal variation of 
charge density in one case, and of current in the other—giving rise to a wave 
that immediately couples one to the other. Together, the electric and magnetic 
fields propagate away from the source like ripples in a pond with characteristic 
shapes that depend on how the disturbance was started, a manifestation of the 
wave equation that can be derived from Maxwell’s equations. In this chapter, 
we will first consider some aspects of the shapes of the waves, then their time 
variations, and finally some underlying aspects of the electromagnetic waves 
themselves. 

Wave Shapes 
The term “wave” really refers to “a self-propagating disturbance” such that a 
disturbance at some location, such as from a pebble dropped into a pond, 
produces a disturbance somewhere else at a later time, without any molecules of 
water actually traveling from the first place to the second. Physicists often refer 
to those familiar ripples in a pond when talking about waves, and use ripple 
tanks to illustrate their thoughts, but water-wave propagation is actually quite a 
complex problem, even in two dimensions. We will be concerned instead with 
light waves propagating in three-dimensional space, such as from the point-like 
focus of a laser beam. There are three simple shapes of light waves that will 
cover most of the cases we will have to deal with. 

Spherical Waves: 
If the wave source is a spark-like disturbance at an idealized point in space, say 
at (x,y,z) = (0,0,0), then the resulting pulsed electrical and magnetic disturbances 
will spread out like a sphere, with the radius of the sphere increasing linearly 
with time at a rate we call the “speed of light,” which is determined by the 
properties of the medium (typically air, which is close enough to a vacuum for 
most purposes). The speed of light in a medium is given by one over the square 
root of the product of the dielectric constant and magnetic permittivity of the 
medium, and is equal to 3 x 108 meters/sec in a vacuum. In denser media, such 
as air, water, or glass, the dielectric constant increases and the waves slow 
down. The ratio of the speed in a vacuum to the speed in a particular medium is 
called the refractive index of that medium, about which we will hear more later. 
For the moment, let’s consider waves in a uniform medium with a refractive 
index of unity (space, or air). 

We have to be a little careful about the definition of the term “wavefront!” For 
a spark source, we can think of the wave as defined by a small interval in time 
when the electric field is non-zero, a “spike” in other words, at a single point in 
space. Maxwell’s equations say that the resulting pulse-like disturbance will 
move outward from that point at the same speed in all directions, forming an 
expanding sphere. The pulse intensity cannot actually be the same in all 
directions, but let’s imagine for the moment that it is (we are usually interested 
in only a fairly small range of angles anyway, where it can be virtually 
constant). As the wave spreads out, its amplitude drops as one over the distance 
(this will provide “conservation of energy,” to be discussed later on), but the 
“spike” stays a “spike” as it moves outward. We will think of the locations in 
space where we could observe the spike at time t as describing a sphere of radius 
r, where 
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r = x 2 + y2 + z2 = c ⋅ t  , (1) 

and c is the speed of light, mentioned above, and t is the time since the spark.

This sphere is what we will call the wavefront. The disturbance moves quickly

outward, always moving perpendicularly to the wavefront at every location, so

that the radius of curvature of the spherical wavefront increases as the wave

moves outward, and is the same everywhere on the wavefront.


What about “rays?” We sometimes think of a point of light as emitting

imaginary particles outward, which travel at a constant speed, their trajectories

described by straight lines called “rays.” Our emphasis in this course will be on

the description of light as a wave phenomenon instead, in which the relative

time properties of the light energy headed in various directions becomes very

important, which information the ray description generally loses. Nevertheless,

we can draw arrows perpendicular to the spherical wavefront at any location

and get a good prediction of where the energy will be found an instant later

(except in birefringent crystals); it is these arrows that we will refer to as “rays”

when we sketch what is going on in an experiment.
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Sketches are important to optickers and holographers alike, and become

problematical because we have only a two-dimensional paper surface to sketch

them upon! Usually, these sketches will represent slices through a 3-D volume,

although we will also attempt isometric-like views of a scene (usually a layout

of optical components), which is a projection through a 3-D volume—quite a

different kettle of fish (the differences will usually be clear from the context).

In most of what we do, light will be traveling from left to right (considered to

be good optical design practice), and we will adopt the z-axis as the horizontal

axis, with the x-axis pointing upwards. So, we can attempt a sketch of a

spherical wave as seen at a single instant of time as a “snapshot” of a slice-view

of the spike, which simply looks like a circle.

If we take a sequence of such “snapshots” at equally-spaced intervals of time,

we get a series of concentric rings, also equally spaced in radius.

The direction of energy propagation is everywhere perpendicular to the surface

of the spherical wave, so the wavefront reproduces itself an instant later as a

sphere of larger radius.
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Mathematically, if we describe the source “pulse” as some function, p(t), at the

center, then the pulse arrives at a radius r after a delay time given by r/c, and

falls off in strength as 1/r . This can be expressed as an electric field of strength

E(r) given by
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Plane Waves: 
After a spherical wavefront has propagated for a very long distance, its 
wavefronts become effectively flat or “planar” over the area of interest to us 
(which is to say that its radius of curvature has become nearly infinite), so we 
refer to them as “plane” waves. For example, the light from a nearby star (other 
than our own sun, which is too wide to be a point-like source) arrives as a plane 
wave (of course, if we changed locations in the galaxy, we would find that the 
angle of the plane wave would change, and that it is truly spherical). Thus plane 
waves are really an abstraction, but physicists are very fond of them for 
simplifying analyses, and we have to take them into account as an interesting 
limiting case of a spherical wave. Because the source location, which would 
ordinarily define the center of our optical coordinate system, is a long ways 
away, we refer instead to the local inclination of the wavefront as observed at 
the new center of our experimental coordinate system. We describe the plane 
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wavefront as having an angle, θ, measured between the wavefront normal and 

the horizontal or z-axis. 

The location of this wavefront at time t=0, shown first, is given by the x,z 
locations of equal electrical voltage, 

x = −  z tanθ , or 

x sinθ + z cosθ = 0. 
(4) 

A short time, ∆t, later, the wavefront will have moved a distance d = c·∆t 

perpendicularly to itself, and the equation for the wavefront becomes 

x sinθ + z cosθ = c ⋅ ∆t  . (5) 

Mathematically, then, if the source pulse has the form p(t) at the (x,y,z) = (0,0,0) 
point, then the field seen at any other location (x,y,z) is retarded by d/c, where d 
is the shortest distance between the origin and the wavefront passing through the 
observation point (the perpendicular distance from the origin to the wavefront) 
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The magnitude of the pulse does not diminish because the wavefront is no 
longer “spreading out” as it would for a spherical wave; the wave amplitude is 
constant as it moves ahead: 
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Cylindrical Waves: 
Later on, we will encounter waves that have different curvatures in different 
directions, called astigmatic waves. A simple first case of one is a cylindrical 
wave, which we can think of as propagating from a surge of current in an 
infinitely long wire; let’s say the wire is stretched in the y-direction. The 
wavefront will lift off of the wire as a cylindrical tube, and propagate outward 
as a tube of constantly increasing radius equal to the speed of light times the 
propagation time. At some distance from the wire, let’s say one meter, the 
wavefront will be curved around the wire in one direction, but not curved in the 
other. These are hard to sketch clearly, but an isometric-style projected view 
would look like this: 
Mathematically, it would have a representation like 
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Light as REPETITIVE Waves: 
So far, we have considered a single pulse-like wave propagating through 3-D 
space, but visible light is a repetitive wave, which is what makes holography 
possible too! In the case of light, the pulses are smoothed out so that the electric 
and magnetic fields are smoothly varying functions of time. If we stood at a 
particular point in space and measured the electric field of a wave passing by 
(spherical or plane), we might observe a voltage as seen here: 

Mathematically, this is described by the trigonometric sine function, with time 
as its argument. Every T seconds (we call T the “period” of the wave), the 
argument increases by 2π or “full circle” (360°) and the voltage pattern repeats: 
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The sine function derives its name from the sinuous “look” of the curve, which

describes the x-coordinate of a point on the rim of a wheel as it turns through

360° or 2π radians.


You might ask “Why are the waves sinusoidal, instead of saw-toothed or 
freq (Hz) 

100


triangular?” The answer is, approximately, that the waves are generated by

electrons oscillating at the ends of “springs” that represent the change of energy

as the electron’s orbit moves nearer to and farther from the nucleus. The actual 103


process quickly gets into quantum complexities that we don’t have time to deal

with here! Similarly, our eyes respond only to the sinusoidal components, 106 

AM radio 

because the sensing structures are resonantly tuned. This all turns out to be 
handy, because the techniques of mathematical physics have largely been 
developed around sinusoidal signals since the days of Fourier, the extraordinary 109 

FM radio, TV 

French mathematician and physicist. 
microwave 

As we move the observation point further from the source, the receipt of the 1012


wave is delayed a little by the extra propagation time, which causes an apparent 
infra-red


shift in the sinusoidal wave by some angle, which we call the phase of the wave,

and about which we will say much more later on. The strength of the wave also 1015 } the visible spectrum


drops off a little, as the 1/r-law dictates. ultraviolet

1018 

The rate of repetition is the only thing that separates light waves from radio, 
television, microwave, and gamma waves! The mathematical physics of all gamma rays


these varieties of electromagnetic waves are the same, but their practical and

physiological properties are quite different. We think of the various waves as

being arrayed in terms of their “frequencies,” measured in cycles per second

(called Hertz, Hz). Their “period” is what we have already seen as T, measured

in seconds (or microseconds, or attoseconds). Their frequency is given by ν (the


Greek letter “new”, in cycles per second), where ν = 1/  T . Electrical engineers

like to speak in terms of the “radian frequency,” ω = 2πν = 2π / T  (“omega,” in


radians/second), but we will speak strictly of the “natural frequency,” ν, in these


discussions.


The electromagnetic spectrum is described in most physics books, and we will

outline it only briefly here. Suffice to say that the principles of holography

apply to all frequencies of waves, not just visible light.


Of the entire electromagnetic spectrum, only a tiny sliver, less than a two-to-one

range of frequencies (compared to the nine octaves of the audio spectrum),

serves to evoke a response in the human eye that we call “seeing.” Within this

visible part of the spectrum, different regions evoke quite different sensations,

which we distinguish by the term “colors.” For unknown reasons, optickers like

to describe the visible spectrum in terms of the wavelengths in a vacuum of the

radiations that are involved. These wavelengths vary between 400 and 700

nanometers (nm, 10-9m), and it is the extreme shortness of these wavelengths

that accounts for many of the practical problems of making holograms. Listing

the radiations of a few common lasers by frequency and wavelength gives us a

chance to compare them.
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The sensation of color produced by light of various wavelengths (when viewed Fourier, Jean Baptiste Joseph, Baron,

as an isolated spot in a dark surround) varies in a fairly reliable way as the 1768-1830, French mathematician and


wavelength varies from long to short. The color names of “red, orange, yellow, physicist, noted for his researches on


green, blue, and violet” and so forth are associated with various regions of the heat diffusion and numerical equations.


spectrum for that reason. We will simplify matters by referring only to the He originated the Fourier series, which

allowed discontinuous functions to be

“red”, “green,” and “blue” areas, which will serve as additive color primaries. represented by an infinite series of 
sines and cosines. See esp. The

Light as Sinusoidal Waves: Analytical Theory of Heat (1822). Also, 
Now, mingling the wave shapes from our discussion of pulsed waves, and the Governor of Lower Egypt for Napoleon. 
sinusoidal repetitiveness of ordinary light, we can come up with a combined 
description of light in a form that can readily be manipulated in mathematical 
terms. Again we refer to illustrative sketches as capturing a “snapshot” of the 
wave, but this time the concentric circles represent the successively-emitted 
peaks of the repetitive sinusoidal waves (not a succession of snapshots, as 

“red” 
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before). The separation of the circles is the distance that the wave travels in T 
seconds, one cycle of the vibration, and is called the “wavelength,” designated 
by λ (the Greek letter “lambda”), so that λ = ⋅  T = c / ν ,  Then we can write,c 

for a spherical wave: 
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When we go on to consider plane waves, the situation is not much different: just 
plug in the new form of the pulsing function into the same old wave shape 
formula, and the new function results: 
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Coherence in waves 
Our simple model of laser light assumes that it emerges from an ideal point 
source (the focus of a microscope lens, for example, as shown in the sketch). 
Within the diverging beam are the concentric spherical wavefronts, invisible to 
the eye. We also assume that this light has a perfectly well-defined and 
unvaryingly constant frequency. But both of these assumptions simplify the 
behavior of real lasers in ways that we should at least acknowledge—before 
continuing to ignore them for the most part! The term used to describe these 
properties of light is their coherence, and it has two “dimensions,” the spatial 
coherence, which describes the departure from ideal point-source-like 
behavior, and the temporal coherence, which describes the departure from ideal 
single-stable-frequency behavior. Both of these follow from the physics of 
resonant laser cavities and light amplifying media, which allow several 
oscillating modes along the direction of the resonator and from side to side. 

spatial coherence - point sources? 
Laser cavities can, if nothing is done about it, resonate in a wide variety of 
modes, each with a slightly different frequency and spatial distribution 4. 
Perhaps you know that mechanical structures also vibrate in different spatial 
modes (e.g., the sound of a drumhead depends on where you strike it)—these 
are easily seen with holographic interferometry! We usually distinguish 
between the various lateral or side-to-side modes, and the various longitudinal 
or along-the-cavity modes. The lowest-order or preferred longitudinal mode is 
the so-called TEM00 mode (“t-e-m-zero-zero”), which produces a nice bell-
shaped output beam, called a Gaussian beam after the German mathematician 
who first used the exponential function involved (rhymes with “house-ian”). 

Other low-order lateral modes produce donut-shaped beams, two-lobed beams, 
and four-leaf-clover-shaped beams. If they are present, then the spot focused by 
a microscope objective will be larger than expected from a single zero-order 
mode. However, almost all lasers used today are “single mode” type, producing 
only the Gaussian beam profile. But if the laser system becomes overheated, or 
mechanically distorts for any reason, it can easily produce other low-order 
modes that will degrade its operation for holographic purposes. The main 
problem caused by the other modes is that their frequencies are significantly 
different than the lowest-order mode, which decreases the coherence length of 
the laser light, discussed below. 
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temporal coherence - monochromaticity?

Usually, “monochromatic” means that a beam of light produces a single color

(“red” for a helium-neon laser), as seen by the human eye. When talking about


f0 +c/L
 

f0 +c/L
lasers, though, monochromatic usually means single frequency. Even when a 
laser is operating “multi-mode,” all of the output beams are the same color!
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You may know that resonators such as organ pipes and violin strings can be f0 
f0

overblown or excited so as to produce overtones or higher harmonics, usually 
integer multiples of the lowest allowed or fundamental frequency (for which the
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laser output 
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string is a half wavelength long, for example). Typical laser resonators are a 
million half-wavelengths long, and are operating at extremely high harmonics of

f0 -c/L
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the basic frequency, given by fcavity = c/2L (in the range of a hundred 
megahertz). The laser’s amplification medium is capable of providing gain over 
a fairly wide range of frequencies, depending on exactly what the material and 
conditions are. Thus the resonator can be simultaneously operating at several 
nearby harmonics of the basic cavity frequency. The combination of these 
modes appears like a single output signal that is fluctuating in amplitude and 
frequency very rapidly, returning to the same frequency every round-trip cavity 
time (one over the fundamental cavity frequency). 

Because the output frequency is fluctuating so widely, only light that emerges 
from the laser at nearly the same instant can interfere with itself—light that 
comes out at a little later time will produce an unsteady interference pattern that 
will average to zero contrast over a very short exposure time. The acceptable 
delay between light samples is usually expressed as the coherence length of the 
laser, the distance that light travels before the frequency changes so drastically 
as to destroy the interference pattern. For typical helium-neon lasers, the 
coherence length is somewhere between 100 and 150 mm (four to six inches). 
A holographic image of a scene will gradually lose brightness for components eta

lon

deeper than 50 to 75 mm from the object point whose path length has been 
carefully matched to that of the overlapping reference beam. 

The coherence length can be dramatically increased by the use of an etalon in 
the laser cavity. This is typically a piece of very carefully polished glass with 
partially-reflecting coatings on each surface. Because it is only 10 mm or so 
thick, its cavity frequency is quite high, and its harmonics are deliberately 
separated by more than the width of the laser medium’s gain bandwidth. If an 
etalon harmonic can be aligned with the central resonance of the cavity, only 
one output frequency will be allowed, and it can have roughly 50% of the power 
previously put out in the collection of frequencies. This produces true single-
frequency operation, and the coherence length can become many hundreds of 
meters. However, the system is still vulnerable to mechanical vibrations, which 
alter the separation of the main cavity mirrors, and thermal drift (which does the 
same thing). Thus, although manufacturers cite some amazing coherence 
lengths, they have to be measured over the time of a holographic exposure to be 
useful predictors, and can be much shorter in practice. These days, almost all 
medium- and large-frame lasers for holography include etalons (single-
frequency operation makes life sooo much easier!), but we will still have to 
worry about it with helium-neon lasers. 

laser output 

etalon 
response 

laser speckle

Another quality of laser light that you have no doubt noticed by now is the gritty

or sandy appearance of the surfaces that it illuminates. We call this grit “laser

speckle.” It is an interference phenomenon that arises from the microscopic

randomness of surfaces that look to our eyes like flat and smooth surfaces, and

as such we can’t say much about it before we start looking at interference in

more detail. Even then, the statistical techniques required go beyond the scope

of this introductory course 5. But we can at least start cataloging some

interesting properties of laser speckle, so that we can know what to look for:


1.	 Laser speckle is always in focus; that is, its contrast is high no 
matter where our eyes are focused. 
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2.	 Laser speckle follows our motion. Or rather, it seems to stand still 
at whatever plane our eyes are focused at. Speckle can be a useful 
way of checking the accuracy of your eyeglass prescription! 

3.	 The size of the speckles increases if the diameter of the pupil 
decreases—such as by looking through a pinhole. 

We will have plenty of experience with laser speckle before the semester is over. 
Interestingly, it will gradually disappear for most of us! 

E&M nature of the waves 
Now we have to deal with some of the realities of the electromagnetic nature of 
these waves. Firstly, the electric field is a vector quantity, so we should 
designate it as a bold-face variable, E(x,y,z,t), and the vector’s direction is 
always perpendicular (or “transverse”) to the direction of propagation (except in 
some crystals). The magnetic vector is also transverse, and also perpendicular to 
the electric vector. Often, the electric vector vibrates up and down, or at some 
angle, so that its end point traces out a straight line. Such light is called 
“linearly polarized.” In other cases, the tip of the electric vector may sweep out 
a circle or ellipse, and the light is called “circularly polarized” or “elliptically 
polarized.” Light from incandescent bodies, such as the sun or electric lamps, 
varies its polarization state every few femtoseconds, and is called “unpolarized.” 
But laser light is usually very well polarized, and is usually linearly polarized. 
The direction depends on the orientation of the Brewster windows for a gas 
laser, and is customarily vertical. Maxwell’s equations require light to be a 
transverse vibration, which means that no point source can radiate equally in all 
directions; there have to be some directions of no radiation (for the same reason 
that you can’t comb a hairy basketball flat—there must always be some 
cowlicks). 

Polarization will come to be fairly important—two reasons come to mind: 
1) The strength of the reflection of light from a glass surface depends on the 
polarization of the light (unless the light is coming in perpendicular to the 
surface), and 
2) Only the parallel polarization components of two waves can combine to 
produce interference patterns (which we discuss in Ch. 3). Perpendicularly 
polarized beams (or rather, orthogonally polarized beams, in the general 
elliptical polarization case) cannot interfere at all. 

Intensity (irradiance) 
When it comes time for a light beam to do some work, such as expose a piece of 
photo film, we have to consider where the necessary energy comes from. In 
virtually all cases, it is the electric field that does the work; the magnetic field is 
just “along for the ride.” Electrical gadgeteers know that the power absorbed by 
a resistive load is proportional to the average of the square of the electrical 
voltage across the load, divided by the resistance of the load. Similarly for 
optical power, which we usually measure in watts per square centimeter and call 
the “irradiance” or the “intensity” of the light (the latter being an obsolete term 
in the metric system, but still very commonly used)—it is proportional to the 
time average of the square of the electric field amplitude. Radiometry and 
photometry are baffling topics, as are most forms of accounting; they account 
for “what happened to the photons, or the lumens, that came out of the laser?” 
Suffice to say that if a uniform light beam has an electric field of the form 

E x, y, t) = A sin(2πνt) volts/meter  , (12)( 

then its average squared value will be 

( ,  y, t) 2	
time = A2 

, (13) 
average 2 

and it will deliver an irradiance of 
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I x  ( ,  y) = (ε0c) E(x, y, t) 2	
time = (ε 

2
0 c ) A2 

average , (14) 

. Erms watts/meter2= 2 65 × 10−3 2  

in the MKS system of metric units. Full sunlight provides about one kilowatt

per square meter, from which you can estimate its peak electric field!


Non-linear detection

All detectors (photocells, photo film, photodiodes, etc.) produce a current

(electrons per second) that is proportional to the power in a light beam (which is

proportional to the number of photons per second). The sensitivity may vary

over the electromagnetic spectrum, but the linear electrical output is always

proportional to the square of the optical input (the light amplitude). Most optical

engineers have thought of irradiance as the linear input variable, but for

coherent-light optickers, the amplitude of the wave is the important linear

variable! It is the “square-law detection” (that is, non-linear detection) of this

signal that causes many of the effects that seem so strange about coherent

optics!


Intensity, Power, and Energy

Holographers often meter their beams, and it is important to understand what the

various units of measurement are, and what they mean. Also, it is prudent to

start thinking about the safe use of lasers, and this also requires understanding

the various measures of laser light, and how they might effect a recording film

or your eyes. There is nothing dangerous about the way we will be using lasers

in this course’s holography laboratory, but they are certainly capable of being

misused with unhappy results.


There are different terms to describe whether we are measuring a light beam

over a small area within the beam, and are interested in its energy density, or

over the beam’s entire area, and are interested in its total “flow.” Similarly, we

have to distinguish between a measurement of a rate of flow at a particular

instant, or the cumulative flow over the entire length of a pulse or of an exposure

time. The chart to the side notes the various terms. We will walk through them

one by one.


The power of continuous-wave lasers, such as the He-Ne lasers in the lab, is

typically rated in milliwatts (perhaps between 1 and 10). However, if the beam

is spread out with a lens, the “heat” felt by our hands will be proportional to the

“intensity” or “irradiance,” the power per unit area. And if this is totaled up

over time, we will determine the total amount of “cooking” each small area of

our hands have suffered, their “exposure” in milliwatt-seconds per unit area,

also called milliJoules per square centimeter (photo film sensitivity is typically

measured in ergs/cm2, a cgs unit; an erg is 1/10,000th of a milliwatt-second).

We add that our lasers are too weak to feel with your hand (go ahead, try it!),

and that a typical flashlight emits about 60 mW of light (which is, of course,

more spread out that a laser beam).


If you are dealing with a pulsed laser, such as a ruby laser, you will instead be

told its total energy output per pulse, in Joules (watt-seconds). A one Joule laser

is pretty big, and puts out as much light in a few tens of nanoseconds as a

10 mW He-Ne does in a minute and a half. If you divide the Joules by the

number of square centimeters of the spread-out beam (and multiply by

10,000,000 to go from Joules to ergs), you will get the exposure of a piece of

film put there. The danger of pulsed lasers comes from the very high

instantaneous power of the beam at its peak, which may cause explosive damage

to surfaces. A one-Joule laser with a 30 nanosecond-wide pulse reaches a peak

power of 33 billion milliwatts. You would feel, hear, and remember that one!

We won’t use pulsed lasers in this course.


We will come back to these ideas when we make measurements for holographic

exposures, which will involve overlapping beams, but the concepts will be the

same. This discussion has been in terms of the “thermal” or radiometric power
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of a laser beam; a whole other set of units and measurements is used to describe 
its “brightness” or photometric power (lumens replace photons, for example). 
Photometry will get short shrift here, but we will have to consider it briefly later 
on in the course. 

Conclusion: 
We have skimmed through a lot of optics to find the mathematical descriptions 
of spherical and plane sinusoidal waves, which will serve us in good stead in the 
chapters just to come. You should make sure that you follow the logic that leads 
to the terms in the parentheses so far, as they will soon mutate into still further 
and more complex forms! Once those are under control, we may not often 
worry about the formalities of describing waves in detail, unless we are 
interested in the details of holographic optical element design. Likewise, there 
are lots of details about measuring the intensities of optical beams that we 
should know about, but only a few calculations that we will make over and over 
again. Nevertheless, as holography takes on new and different forms, there are 
likely to be times when we have to worry about measuring beams based on 
fundamental principles. For example, we have ignored the effect of exposure 
angle on the necessary dose for a holographic material—this is acceptably 
accurate for typical angles, but requires re-examination when we start talking 
about edge-lit holograms that involve very large beam angles. 
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