Chapter 3: Waves and Phases

Our discussion so far has described light waves as three-dimensional
phenomena, especially their electric fields as functions,pfz(). But for what
follows we want to concentrate on the behavior of waves as they cross specific
two-dimensional planes, with their time dependence suppressed (because they
will all come from the same laser, and have the same frequeieyneed a

way to describe the shape of the wave in mathematical t&rando this, we

will introduce the notion of thphaseof the wavefront, as determined by its

relative delay in arriving at various points on the measurement pldree.
observation of the pulsing from a point source in space is delayed, relative to the

source, by a time proportional to the straight-line path length between the source

and the observation pointf the source is repetitive or cyclic, from a sine-wave
source for example, then we can also express the delay as a fraction of the
repetition time or period,.TThis in turn is represented as a fraction of 360
degrees or 2radians, the angle that a wheel turns in generating a full cycle of a
sinusoid. As a rule, we are not interested in the number of whole cycles of
delay, but in the fraction beyond the nearest whole cycle.

Wave phase
Our most common notions of phase probably come from the “phases of the
moon,” and that is not a bad place to stditde moon goes through its cycles
very reliably and repetitively, with a period of 28 dayse think of the phases
as full, half (coming and going, or waxing and waning), aea-moon (with
gibbous in between somewhere, and ignoring eclips&'g) can think of wave

phases in much the same way, except that the fraction of a full cycle is measured

in degreeswith 360°representing a full cycle, or the entire repetition time (or
“period”). Describing the moon’s cycle by a sinusoidal variation that is roughly
the illuminated area (more nearly, 0.5 + 0.5 sitii®), a waxing half moon

would be the zero degree mark, a full moon at then®@k, a waning half moon
the 1807 a new moon at 270and the waxing new moon at 360°0° (they

look the same in this modulo-3660fath).

Formally, we would describe a wave as having an amplitude and a phase, with
the frequencyy (the Greek letter “new”)sually being left implicit. Thus we
would say for a spherical wave irCBspace:
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where the electric-field amplitude (as a function of distance from the soyrce,
E(n), is
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and the phase, denoted pythe Greek letter “fie” or “fee”) as a function Kfis

(p(r)_z_nr—ZTn\“‘x +y 2472 (3)
The fun begins when we look at specific analytical expressiongrjoand try
to guess what kind of wave produced them, and where it is gdioglo this,
we will limit our attention to a single-y plane in space, and try to identify the
characteristic phase patterns, or “phase footprints” of some typical waves.

An on-axis spherical wave

Imagine that a point source is located at (0,0,0), and our observation plane is
located at z = +Z, as sketched on the righthat then is the form of the phase
function, ¢(x,y), in this plane?We have seen that the phase increases linearly
with distance from the source, and so increases as we move away from the
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(x,¥)=(0,0) point, on theaxis. Further, the phase stays the same as we move in
a circle around the-axis, because the distance from the source is a constant as
the line from the source to the observation point sweeps out a Bargging in
the expression from Eqg. 2, which we will use over and over again, we find

(p(r):2771\fx2+y2 +7°
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To simplify the equations we must apply some approximations: namely, that the
angles of the lines from the source to the observation plane are small, so that the
X,y distances are much smaller thaniZthis case, we can use the binomial
theorem to simplify the equations to:
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Now, we can identify Z as equal to the radius of curvaRref the spherical
wave when it first reaches the observation plaed, because this observation X
plane may be anywhere along thaxis, we will consider the phase to be a X

function only of the coordinates within the plareand y. The phase pattern of

a diverging spherical wave, what we will call its “phase footprint,” is then:
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The first term represents a constant (over the plane) phase delay due to the time
that it took the wave to get to the plane at all; we can c@jl iBecause the

phase of the source is itself unknown, we will usually ignore this constant phase,
and emphasize the term that has variation wind y, calling the “footprint”

pattern that will reveal the shape of the wave that causédtiis case it is a
“parabolic” term, with only second order terms, but in both x and y, and with the
same coefficient for both directions.

On-axis spherical wave phase footprint:

This phase pattern is worth looking at in more graphical detail, as seen from the X
+z direction and sketched her&he concentric circles represent the loci of
points of equal phase, which we assign to be zero degrees (successive multiples

of 360¢ that is) for simplicity. The lines are circles because the phase is

constant wherever?+y? is a constantBut the circles have radii that increases <
more and more slowly as the phase increases; if the n-th circle represents a y M

phase of n-360greater than the center, then the radius of the n-th circle is
proportional to the square rootmf That means that the area between
successive circles is a constant, by the way!

Off-axis plane wave
Let’'s now consider the case of a point source so far away that the wavefronts
hitting the observation plane (&t0) are effectively flat.The source is aXg,

-Zo, Which are both very large compared to the size of the observation plane, but
in a ratio that determines the inclination of the wave vector—which is

N
perpendicular to the wavefront—to Bg degrees to the-axis, where \\\d\ ) /\90
6 = tanl(Xo/Zg). The waves crossing they plane as seen here: \\ -

The higher up the x-axis we go, the farther away from the source we find /\ \\\ z
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ourselves, so that the wavefront phase increases with increadingy.is - \
subtracted from the phase at x=0 (as usual), the phase increases linearly with -

-
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distancex. Further, from the geometry (or by substitution into Eq. 3), we can
see that
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Off-axis plane wave phase footprint:
The phase is constant along any constantine, independent of, because the
plane wave is inclined purely verticalhAs seen from thezdirection, we can
sketch the lines where thghase is equal to zero degrees (again), which are now
straight horizontal linesWe find that the spacing of the lines, d, is inversely
proportional to the (sine of the) angle of inclinati€,
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Note: If instead the source were off to the side, somewhere alogepttie
(X=0), the constangzlines would become verticallhe spacing of the
constant-phase lines depends only on the angle of the wave vectorfaxibe

as the source revolves around thexis, the lines rotate around the x,y=0 origin,
staying perpendicular to the plane defined byzthgis and the wave vector.

We will only rarely consider waves not in tkez plane, though.

Off-axis spherical waves
The most general case of a spherical wave isftkexis diverging wave, which

forces us to grapple with a few strange new idé&sw, we consider the source
to be at -X%,-Zg, where these are not very large numbers (that is, we have to take

wavefront curvature into account at last).
Converting to polar coordinates, we can express the radius of curvature and
inclination of the wavefront at the origin as:
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Now the problem is to find (the distance from the source) as a functior of
andy (the location in the=0 plane).Because we are interested in only a small
area around the origin, we can expreas B power series expansion with
acceptable accuracy:

1
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The derivation of the coefficients is left as an exercise for the reader, but the
answers are shown without too much difficulty to be:

A=3n@,

B=0

c=- cos? 6,
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Plugging these into the expression for the phase then gives
_ 2m T 2,2
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which is what we will use in all our future workote that it seems like a
logical combination of the on-axis spherical waves and off-axis plane waves we
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have seen so far, except for the peculia?8gterm; you should satisfy yourself
that this term is correct, if not logical, before going any furtfigre wavefront

itself has, by the definition of a spherical wave, equal physical curvatures in the
x- and ydirections, namely R However, the “mathematical curvatures,” or
coefficients of the second-order phase terms, are different, which is likely to be
confusing.

Off-axis spherical wave phase footprint:

Our sketch exaggerates the difference, but connotes how the “phase footprint” of y
this generalized spherical wave might lookou should satisfy yourself that it

reduces to both the on-axis spherical wave case and the off-axis plane wave case
under the proper conditions (named,= 0 or Ry = ).

Given a sketch of a wavefront, or better yet its analytical expression, we are now
prepared to work backwards and determine its radius of curvature and
inclination in a general spherical-wave calkeanay even be that the wavefront

has two radii of curvature, different ones in thandy- axis directions, but that

is a story that has yet to come, and when it does it will be cakigimatism!

The local inclination and divergence of a complex wave:
In analyzing holograms, we will often be dealing with complex waves that are
reflected by complex three-dimensional objed#e will model such waves in
two different ways:
1) Most often, we will treat complex wavefronts as the composite of many
sphericalwavefronts emitted by point-like areas on the surfaben the
recording and playback processes can be shown to be roughly linear, what is
true for each of the spherical waves individually will be true for their
combination, even for millions of them at a timEhis approach is akin to the
linear systems theory style of electrical engineering analysis, where complex
waveforms are built up from a superposition of sinusoidal (Fourier) elemental
components.
2) In other cases, we will consider even a complex wave to have a slowly
varying amplitude and modest wavefront curvature at every point on the
recording mediumWhich is to say that the amplitude and curvatures are
constant over areas that are several wavelengths on alsidein turn,
requires that the complex objects subtend an angle that is much less than 180
any direction (usually well under 30°Then, we can model the wave at every
small area as a spherical wavelet (or perhaps an astigmatic waVééetan
then calculate the wavefront for that area at the output side of the hologram,
stitch the small areas together, and predict what the entire output wave will be
like (or at least what its relationship to the input wave will bdjis is the
“patchwise-spherical” model, and will be especially useful if we have to deal
with strong non-linearities in the recording/playback response.

Conclusions:
There are many ways to describe waves, each of which highlights an aspect that
is important to a certain kind of problemisaser light is highly coherent, which
means that it seems to come from a well-defined point source, and that it is of a
single frequency, so we don't have to worry about dealing carefully with the
frequency or wavelength of the light, and can concentrate instead on its spatial
variations. Our concerns with interference and diffraction will make a careful
account of th@haseof wavefronts especially importanRhase will tell us
“where the light goes.'We will be a little less interested in the wave
amplitudes, as we are a little less interested in “how much light gets there,” for
the time being anyway.
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