Chapter 8: A Ray-Tracing Analysis of Holography

Introduction
Rather than tackling a generalized and global proof of the wavefront
reconstruction properties of holograms, we can instead look at the recording and
reconstruction of wavefronts at every small area of a hologram, using just the
simple ideas of two-beam interference and diffraction by periodic structures,
with the coordinate system continually re-centered on the small region of
momentary interest. In this approach we say either that the object beam is
locally planar—because its radius of curvature is so much larger than the
diameter of the region of interest—or that the object beam can be considered as
the sum of a number of plane waves from point sources far from the hologram
plane, and we consider them one at a time. Either way, we use a single plane
wave as a localized “stand-in” for a more complex 3-D image-bearing object
wave. Likewise, the reference wave is considered to be locally planar; it is
usually a long-radius spherical wave, so this is a very good approximation.

As a sketching shorthand, we will indicate the diverging spherical wave by a
cluster of arrows perpendicular to the surface of the wavefront. If we examine
each arrow carefully, we might find that it has wavefronts within it that are too
small to see. Thus these arrows are not the k-vectors, or the “rays,” or even the
“ray bundles” you sometimes see mentioned in optics texts, although they
resemble them all and are parallel to them (“rays,” for example, are the line
trajectories of imaginary light particles). The arrows are instead “mini-wave-
beams” of a new sort, which let us draw accurate wave-optical pictures in
familiar ray-optical ways. What they leave out is that the wavefronts within the
arrows have a particular and fixed phase relationship; this doesn’t usually matter
for imaging calculations. Whatever we ought to call them, though, we will
probably be careless and call them “rays” anyway, and it might even be useful to
think of them as an extended variety of a generalized ray. Enough semantics!

Suffice to say that we consider each point of the source to be emitting a
diverging fan of rays, as does the reference point source. Where the object and
reference rays cross, we compute the spatial frequency of the interference fringe
pattern within their (not insignificant) width according to the grating equation,
as they are both plane waves (locally). That pattern exposes the hologram plate,
which is then processed to produce a modulating structure (or grating) with the
same spatial frequency. A ray from the point source of illumination then strikes
that grating, and becomes diffracted into several orders. The rays from any one
order, such as the m=+1 order, can be traced back from several different
locations on the plate, and their intersection will define the apparent location of
a single source that produces them all, the “virtual” image of the point. If all
goes well, holographically speaking, that location will be at the location in 3-D
space of the original object point. We do the same for all points on the object
(arguing by linearity that the hologram will hold all the little gratings
independently of each other), and trace out the virtual image in 3-D space point
by point. There are some subtleties here though: how does the eye know where,
along the possible line of locations for the part of the ray that it receives, the
intersection is? A mystery of visual perception perhaps, but at least consistent
with simple triangulation (there is much more to spatial perception than
triangulation, however!).
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Mathematical Ray-Tracing:
The problem has now been reduced to keeping track of the fates of a few plane
waves during interference and diffraction, something we are now well set up to
handle. Consider this sketch of an “in-line” or “Gabor” hologram (this is the
kind of hologram that Dennis Gabor was experimenting with in 1947 when he
invented holography), the first type we will analyze in detail. We examine the
beams or rays crossing a point, P, above the z-axis, where we construct a local
coordinate system with axes x’ and Z. An object point is on the z-axis at some
distance, and the reference beam source is farther away, still on the z-axis. We
examine the area around P, some distance up the x-axis, where the beams take
on their local angle values, 6pj and Gref. Where they overlap, a pattern of

spatial frequency f is generated, where
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This becomes the spatial frequency of the grating created at P by exposure and
processing of the holographic plate (that is, the plate doesn’t expand or

contract). g
The plate is then illuminated by a point source at some other distance, producing
the local illumination angle 6. The output angles are therefore given by
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Combining the relevant equations yields
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This is our general raytracing equation, applied at every (x,y,0) location on the
hologram plate.

Now, considering the m=+1 term, it is clear that if A2=A1 and 6j=6ef (as it
would be if the illumination source location were the same as the reference
source location), then Gyt +1=6opj. If this is true at every (x,y) point on the
hologram surface, then the angle of the wavefront will have been reproduced
everywhere on the hologram surface, and so will the wavefront itself (give or
take an overall constant). If the reconstruction conditions are changed from
“perfect,” then the output angle follows the general relationship,
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and the location of the image has to be determined by more careful numerical d=1/f
triangulation (as we do in the next section). In general, the rays of any order
might not all diverge from (or converge to) an exact or single common point; in
such a case the focus is said to be “aberrated” and its location is not well
defined. For now, we will assume that the point is well-defined, and all
wavefronts will be spherical.

Equation Three represents the ray-tracing equivalent of a general statement of
holography. Indeed, it can be considered as a reduced version of the general
phase equation, namely the relationship between the first-order x-derivatives of
the wavefront phases. Unfortunately, it is limited to P locations in the y=0 plane
(the x-zplane), and thus is not a fully three-dimensional statement. We will
discuss fully-three-dimensional raytracing near the end of this chapter, and find
that it takes us well beyond “shop math!” Fortunately, most of the relationships
that we care about in this course are limited to the x-zplane, or very close to it,
and we can prove them using the simpler 2-D form, which is Eq. 3. As a last
resort, we can appeal to elaborations on the phase equation, which at least
involve only scalar variables.

Numerical Example:

As an example, let’s consider a specific case of recording a single point in the
“in-line” or Gabor hologram geometry: the object is a point on the x-axis at
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Zyhj=-500 mm—that is, at location (x,y,2=(0,0,-500), as sketched in the margin.
The reference beam is a point source an infinite distance away, so that it
produces a plane wave at the hologram surface, and all its rays are horizontal,
parallel to the z-axis. We can assume that the intensities of the two beams are
equal at the plate (although the reference beam would typically be 5 to 30 times
stronger when recording an actual image hologram).

Getting even more concrete, let’s try to trace at least two rays through the
hologram in order to do some image location by triangulation. If we do one ray,
we will get another “for free” in this case, and there is a third that is also
available nearly “for free,” so we will soon have even more rays than we really
need. Let’s consider first the ray-tracing location at point A, which is 50 mm
above the z-axis. There, the object beam’s angle is
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and the reference beam’s angle is 0°. Assuming that we are using a He-Ne laser,

the spatial frequency of the grating formed at point A is therefore
_SinBop —SiMf gt 0.1-0
A A 633%x10°°

By symmetry, the spatial frequency at point B, which is 10 mm below the z-axis,
is also 157 cy/mm (note that there is a sign reversal, and that we are taking the
magnitude of the result to be the spatial frequency).

Hobj =tan 5.71°, (6)

=157 cy/mm. . @

The third “landmark” point of known spatial frequency is found by casting a line
between the reference point source and the object point, and extending it to the
hologram plane. In this example that location is at (x,y,2 =0, 0, 0, the point we
are calling C. As seen from this location, the two waves are “in-line,” and the
angle between them is zero; thus the spatial frequency here is also zero! We
will often refer to this as the “zero-frequency-point” or “ZFP” in our analyses.
For reasons that become clearer in a moment, it is also sometimes called the
“hinge point” of the hologram.

Now, imagining that the hologram has been properly exposed and processed so
that it has high contrast gratings everywhere, let’s consider what happens when
we illuminate the hologram again with the reference beam. Consider first the
location A: the output angles are given by
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And the values work out to be, for m between -2 and +2:
at A:
m -2 -1 0 +1 +2
Bout -11.48° -5.71° 0° +5.71° +11.48°

To calculate the angles at B, we have to be a little careful about which we call
the m=+1 order. Although the spatial frequency is the same at B as at A,
straightforward application of Eq. 1 would give a negative frequency. We have
to apply the magnitude bars to get the same positive f. But in ray tracing we
have to avoid the magnitude bars, and accept a negative frequency if we are to
find the rays corresponding to the same m crossing at the same point. Note: this
is not a problem for electrical engineers, who often deal with negative
frequencies! The calculation at location B then produces the same results as at
A, but with reversed signs (this follows from symmetry, without calculation in
this case).

at B:
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Point Image Locations - Real & Virtual

To find the locations of the focus points that represent the “images” produced by
this hologram, let’s look first at the easiest term, the m=+1 term. This produces
rays propagating in the same direction as the original rays from the object at
5.71° away from the z-axis. Their “back-casted rays” cross each other, and the
z-axis (recall that the ZFP ray will travel straight along the zaxis!) at

Zz=-500 mm, so that a “virtual’ image of a point will appear there, in the same
location that the object point occupied. In this “perfect reconstruction” case,
that location will be obtained no matter where we choose the ray-tracing
locations A and B.

The m=-1 rays, on the other hand, are headed toward the zaxis at the same
angle, 5.71°. Without much effort, we can predict that they will intersect at
z=+500 mm, producing an on-axis focus in front of the hologram, a “real” image
a distance in front of the hologram equal to the distance of the virtual image
behind. It can be focused onto a card or ground glass as a bright point or (with
much care) viewed directly with the eyes.

The angles of the two second-order rays are approximately twice as large as
those of the two first-order rays, and produce virtual and real images that are
roughly half the distance from the hologram. These follow from the definition
of the trigonometric tangent, where h is the height of the ray-tracing location
(plus and minus 50 mm in this example),

h tan G, , )
so that from the A and B locations we get these z-values:
m -2 -1 0 +1 +2
Zm +246 mm | +500 mm 00 -500 mm -246 mm

Approximations: A full expression of the image distance is given by cascading
these relationships to yield

O 0 O O
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We note that an expansion of the trig terms of this expression yields an
interesting approximation for 1/zy;

l.m, h—zgm(mz_l)g. (11)
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If we let h decrease by a factor of 5, to 10 mm, then the second term decreases
by a factor of 25, becoming negligible. We can describe this as a paraxial case,
which involves only rays making small angles to the axis, so then tan6=sin6=
@ (in radians), and which stay near enough to the axis so that h is small
compared to the object and image distances. In this case the approximation
reduces to
Zobj
Zn=——. 12
m=— (12)

However, in the general case we will have to do a more careful job of raytracing,
yielding the deviations from the simple prediction that are shown in the table
above.

Illumination Wavelength Effects
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If the wavelength of the illumination light, A, is changed, then the angles of
diffraction will change, and so will the image locations. Assuming that the new
wavelength is 550 nm, for example, we find by calculation that the angles at A
and the corresponding image locations become:

m -2 -1 0 +1 +2
Bout -9.96° -4.96° 0° +4.96° +9.96°
Zm +284 mm | +576 mm 00 -576 mm -284 mm

Note that, because the green light is deflected “less radically” than the red, the
images are formed farther out on the positive and negative z-axis. The higher- A
order images are still formed closer in than the first-order images, but are also
farther out than the red images were.

The calculation equation is now given by

o O 0 O
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where A1 and A2 are the recording and reconstruction wavelengths, respectively.
The expansion then becomes
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The paraxial approximation form then becomes
Zobj A
o= Fji , (15)

Source Distance Effects

Now let’s consider the effects of moving the illumination source closer to the
hologram. Leaving the wavelength at 550 nm (green), let’s put the illumination
at five meters from the plate, at (x,2 = (0, -5000). Now the illumination angle at
A is 0.57°, which will rotate all of the diffracted beams by roughly that amount
(greatly exaggerated in the sketch). As a consequence, the m=+1 rays will be
traveling at a larger angle to the z-axis, and the resulting virtual image will move
in toward the hologram, while the m=-1 rays will travel at a smaller angle to the
z-axis, and cross it farther out from the hologram. Plugging into the calculator
again, we find the relevant numbers to be:

m -2 -1 0 +1 +2
Bout -9.38° -4.38° 0.57° +5.54° +10.54°
Zm +303 mm | +652 mm 00 -516 mm -269 mm

Note that the first-order real image moves outward by almost 75 mm, and the
first-order virtual image moves inward by only 60 mm.

The relevant cascaded mathematical expression is now

0 0,0 Q 0 0 H  0_ ,0n0F
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and the corresponding expansion becomes
1_ A | D+ 1
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of which the first of the three lines, which is the paraxial approximation, suffices

for the first-order images and matches the calculations very well if they are
made for a ray height of only 10 mm or so.

Aberrations of Holograms - Spherical Aberration

o
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We have been pursuing this example to demonstrate exact ray tracing, and to develop some approximations to its
results. But a few secondary issues have also come to light. We note that if we calculate z, for a variety of ray

heights, h, that rays from the edges of the hologram do not always cross the axis at the same zy, as do rays from near

the axis, the paraxial rays. The resulting degradation of the focus of the image is called an aberrationof the
wavefront, describing its departure from perfectly spherical behavior. This particular type of aberration is directly
analogous to spherical aberration in simple glass lenses (a consequence of the spherical shape of their surfaces), and
so has been given the same name in spite of there being no spheres involved.

Aberrations of Holograms - Chromatic Aberration

While we are at it, we might as well point out that if the hologram is illuminated
with light of several different wavelengths, each wavelength will be focused to
an image at a different distance, and the overall focus will be degraded. Glass
lenses produce a similar effect, due to the prism-like nature of their edges, and
the result is called chromatic aberration It is a much stronger effect in
holograms than in lenses, and not so readily correctable (as we shall see!).

Source Angle Effects

%

Here, we consider the effect of moving the illuminating point source to one side o

of the z-axis, say upward by 50 mm. Now, the rays illuminating points A, B,
and C all change angle by about the same amount, and with the same sign. The
fan of diffracted output rays also rotates by roughly that angle at each location,
and their intersections necessarily rotate also, so that the images are moved
away from the z-axis.

Source Size Effects

We can now imagine that if the illumination point moved continuously from the
z-axis to a point 50 mm above, that the various images would move
continuously from their original locations to the locations described in the above

AR

section. And, if an array of several sources were placed on a line connecting
those two locations (each incoherent with all the others), then an array of several
images would appear on a line between the two extreme images. Thus we can
already begin to see how a spatially incoherent source can produce blur in an
image.
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Comparison of Paraxial Hologram and Lens Optics
The expansion of the expression for the numerically ray-traced image location,
Eq. 17, has as its first line of terms the paraxial approximation of holographic
ray-tracing. This relationship is
O O
1ol 101 s)
Zn M Zobj  Zref O Zi

In the cases we have been describing, all of the zgp are negative quantities,

representing locations to the left of the x-axis, except for the zy, for negative m

in most cases. The point of this section is that this formula is identical in form
to the equation that describes focusing by a refracting or glass lens if the focal
length is suitably described. The analogy between the elements of a hologram
and conventional lenses is a very powerful one to those who are familiar with
optical components. Assuming that this might not be the case here, we will
demonstrate a few of the simpler principles along the way.

Definition of a Glass Lens

A normal glass lens (the same ideas will apply to plastic and liquid lenses) is
defined by two spherical surfaces that cause the lens to be either thicker at the
center than the edges (for a so-called positive lens), or thinner at the center (for a

so-called negativelens). We denote the radii of curvature of the surfaces by Ry
and Rp, which are positive if they are convex to the right (or concave to the left).
Thus, in the sketches here, Ry is negative and Ry is positive. Depending on

which comes first, the lens might be positive or negative. The thickness at the
edge or center doesn’t affect the lens focusing in the thin-lens approximation,
only the curvatures do, or rather the change in slopes of the surfaces as a
function of height above the z-axis.

Such a lens can be approximated by a pile of prisms, as shown here. The central
parallel-sided block of the prism doesn’t deflect rays, only the refraction at the
tilted surfaces at the edges does—which leads to a Fresnel-lens-like
representation.

For a real lens, the surface slopes change continuously. The thickness at any
height, t(x,y), is given by (using the same approximations for spherical surfaces
as for spherical wavefronts)

t(x,y) = tg +%§% —Rizaxz + y2) , (19)

where tg is the center thickness. The downward-pointing angle, a, between the
surfaces at height h (that is, at (x,y)=(h,0) ) is given by

a(h) - - dt(X, y)

ox x=h,y=0 (20)
_ _[Il _ 10
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which increases linearly with height for a positive lens.

Ray Deflection by a Lens

We saw in Problem Set #0 that ray deflection by a prism has to be determined
fairly carefully, due to the non-linearities of the sine functions in Snell’s Law.
However, for rays roughly perpendicular to the surfaces, where sin6=6, a simple
rule for the angle of deflection, A8, as a function of the apex angle, a, and the
index of refraction, n, can be used:

A =(n-1a . @1)
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Image Distances: the Focus Law
Now, if we adopt the same illumination source convention as above, a source
ray striking the lens at height h will be incident at an angle 6; given by

40h O

6y = tan AR, B (22)

The output angle, 6yt, will be given by 6j1-a, and will appear to be coming
from a location zjmage given by, within the paraxial approximation,

1 :_taneout~_ 9i|| -9
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which is completely independent of h!

Now, if we let zjjj — oo, the image will be formed at a positive zjmage (recall that
R1 is negative), at a distance that we will call the “focal length” of the lens, or

FL. This is the distance at which an image of the sun will be formed by a
burning glass, for example. Note that the focal length of a “positive lens” is a
positive number, so that the focus is formed to the right of the lens—a real
image of the illumination source. The focal length of the lens is given by the so-
called “lens-maker’s formula” as

1 g1 10

H:(”‘ )E__R_L-'-EZH. (24)

Note that a variety of combinations of curvatures can produce the same focal
length lens; they differ only in their higher order optics—aberrations and so
forth—so that dish-shaped or “meniscus” lenses are usually used for reading
glasses, and flat-on-one-side or plano-convex lenses are used for collimators. If
you read about this topic in other optics books, beware of differences in
definitions of the signs of curvatures that might change some signs in the
corresponding results.

Substituting the focal length into Eq. 23 then gives the focusing equation well
known in all of optics:
L1, )
Zimage FL 27
Some combinations of illumination and image distances are shown for
reference.

Comparison to Holographic Focusing
Now lets re-examine the focusing law for the paraxial ray-trace of holograms
and dwell on a few similarities:

1 _m/\ZD1 10 1
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(26)
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where we define the focal length of the hologram, FLpg|q, as

1 Al 10

[ — -
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That is, each order of diffraction by the hologram corresponds to focusing by a
different glass lens, where the focal lengths of the lenses are both positive and
negative and the focal lengths of higher orders are integer fractions of the first-
order focal length. Further, the focal length is inversely proportional to the
wavelength of the light used for reconstruction, so that red light is focused closer
to the hologram than blue light in each order.

@7

The plus and minus first-order holographic lenses always have the same
diffraction efficiency, and always appear together, occupying the same location
and providing the effects of positive and negative lenses of equal and opposite
focal length. It is though two differently-shaped pieces of glass occupied the
same physical space! This lens-pair model of a simple holographic lens will
arise again and again in our discussions to come.

Depending on your own insight into conventional or refractive optics, the use of
the lens analogy may or may not be useful, but it seems comforting to know that
the results of diffraction by these simple holograms have at least a small
resemblance to centuries-old optical principles!

Three-Dimensional Ray Tracing
The extension to angles out of the x-zplane has been shown by Welford®,
among others, to be (adapted to our notation)

nx (fout,m‘ rin) = mi\\—i nx (robj_ ref ) (28)

where n is a unit vector perpendicular to the hologram surface at the raytracing
location, and the rapc are four unit vectors in the directions of the corresponding
obj, ref, ill, and out,m rays. The x denotes the vector cross product. Clearly this
takes our discussion into vector algebra proofs for which “shop math” hasn’t yet
prepared us. However, the equation can be broken down into components that
do resemble the equations we have been working with.

Let the individual ray unit vectors be represented by their components in the x-,
y-, and zdirections, which are the cosines of the angles of the ray rapc with the
X-, y-, and zaxes, respectively, which we denote as ¢, Mahc, and Ngpe (the
reader will have to keep the distinction between “m, the order number,” and
“Mgpc, the direction cosine” clearly in mind here). The ray unit vector could
then be given by (!éabc X, Mgpe Y, Nape z), where X, y, and z are unit vectors in

the corresponding directions. However, we shall analyze Eq. 28 for the x- and
y-components separately to give

- M
Cout = mz(fobj —fref)wm ,

A
Mout = mA_l(mobj - mref)+ my, , and (29)
2

—
Nout = v1- fgut_ mc2>ut

If mypc is constrained to be zero, so that the abc-ray lies in the x-zplane, then

£ apc» Which is always the cosine of the angle between the ray and the x-axis,

becomes equal to the sine of the angle between the ray and the z-axis, the Gp¢ as

we have been defining it. If this is true for the obj, ref, and ill rays (and thus for
all the out,m rays), then the equations we have been using are actually just half
of the components of the full three-dimensional ray-tracing analysis. Our
simplified approach could be extended whenever desired to handle the other
relevant components also. However, we will continue as we have been doing,
pointing out this interesting connection only in passing.
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Conclusion
Raytracing is highly accurate but computationally intensive and barren of
physical insight. Simple approximations yield workable formulae that are handy
for the purposes of designing systems and testing ideas. Analogies with
conventional refracting optics can be drawn, although holograms are seen to be
many lenses in one. Fully-three-dimensional ray tracing is seen to be possible
with fairly straightforward extensions from techniques we have limited to the
x-zplane.
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