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Separating Transparent Layers in Images


Abstract 

This paper presents an algorithm to separate different transparent layers present in images of a 3-D scene. 
The criterion of minimum mutual information is presented and evaluated. We find that high frequency details are 
faithfully recovered while the recovery of low frequency details needs improvement. 

INTRODUCTION 

Typically, when we image a 3-D scene using a camera, different 2-D layers of the scene that are 
at different distances from the camera are superimposed. For example, consider the images shown in 
Figure 1. The two images belong to the same scene containing a chair and a file cabinet. However, the 
images are captured by focussing at different depths. The surface that is in focus is sharp and the surface 
that is out of focus is blurred. 

(a) The file cabinet is in focus	 (b) The chair is in focus 
Fig. 1. An example illustrating superposition of transparent layers in an Image. 

Such images are often encountered in microscopy while studying the anatomy of various organisms. 
Different slices of cells or tissues are captured by focussing at different depths. In order to study any 
particular 2-D slice from such images, it is important to separate the effect of other 2-D layers that are 
super-imposed in the images. 

THE MODEL 

Let a 2-D layer f1(x, y) interfere with a 2-D layer f2(x, y). We consider the slices ga(x, y) and gb(x, y), 
in which either layer f1(x, y) or layer f2(x, y) respectively, is in focus. The other layer is blurred. Modeling 
the effect of blur as a convolution with blur kernals, we have, 

ga(x, y) = � 
f2(x, y) ⊗ h2a(x, y)� 

.f1(x, y)	
(1) 

gb(x, y) = f1(x, y) ⊗ h1b(x, y) .f2(x, y) 

where ‘⊗’ denotes convolution and ‘.’ denotes multiplication. The above model does, in fact describes 
the images shown in Figure 1. For example, consider a region in Figure 1(b) where the chair has holes. In 
that case, we are able to ‘see through’ a blurred version of the file cabinet. The regions where there are 
no holes in the chair in Figure 1(b), we do not ‘see through’ any version of the file cabinet. And hence, 
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the ‘multiply after convolution’ model. We assume that the blur-kernals are space-invariant for constant 
depth objects. Moreover, if the system is telecentric, then h1b(x, y) = h2a(x, y) = h(x, y). 

PRIOR ART 

Separation of different layers in images has been studied before. In [1], [2], the authors propose the 
use of Independent Component Analysis [3], [4] to separate reflections from Images that are caputered 
with a polarizer. Using local features to perceive transparency in images has been proposed in [5], [6]. 
The closest to our work is [7], [8], where the authors propose separation of transparent layers using a 
different model for superposition. The novelty of our work lies in the formulation of the transparent layer 
interference as a mutliplication of images as opposed to the standard approach of summation. 

OUR APPROACH 

The two equations in eq (1) have four unknowns, namely f1(x, y), f2(x, y), h2a(x, y) and h1b(x, y). And 
hence, this is a highly under-determined system. To solve the above system of equations, we make the 
assumption that h1b(x, y) = h2a(x, y) = h(x, y) (This is a reasonable assumption especially for telecentric 
images [7], [8]). Under this assumption, the resulting model is given by, 

ga(x, y) = � 
f2(x, y) ⊗ h(x, y)� 

.f1(x, y) 
(2) 

gb(x, y) = f1(x, y) ⊗ h(x, y) .f2(x, y) 

We are still left with three unknowns and two equations. Here, we leverage the idea of minimum 
mutual information that was proposed in [7], [8]. The underlying intuition is that if f̂  

1(x, y) and f̂  
2(x, y) 

are the solutions to the equations (2), then f̂  
1(x, y) and f̂  

2(x, y) have the least mutual information 
I(f̂  

1(x, y), f̂  
2(x, y)) among all possible solutions to equations (2). We use this criterion to find the optimal 

h(x, y) that yields minimum mutual information between the recovered images f̂  
1(x, y) and f̂  

2(x, y). Even 
given h(x, y), finding the solution to the equations (2) is challenging. Our algorithm for separating f1(x, y) 
and f2(x, y) is given below: 

1) Assume a blur-kernal h(x, y) and solve for f̂  
1(x, y) and f̂  

2(x, y) using equations (2). This is 
not straightforward from the equations themselves. We find f̂  

1(x, y) and f̂  
2(x, y) iteratively from 

equations (2) as follows: 
a) Initialize f̂  

1(x, y) = 1 and f̂  
2(x, y) = 1. 

b) Iteratively update f̂  
1(x, y) and f̂  

1(x, y) as 

f̂  
1(x, y) = � 

ga(x, y) � 
f̂  

2(x, y) ⊗ h(x, y) 

f̂  
2(x, y) = � 

gb(x, y) � 
f̂  

1(x, y) ⊗ h(x, y) 

c) Return f̂  
1(x, y) and f̂  

2(x, y) after ten iterations.

2) Calculate the normalized minimum mutual information
� � I f̂  

1(x, y), f̂  
2(x, y) 

In f̂  
1(x, y), f̂  

2(x, y) =
[H 

� 
f̂  

1(x, y) 
� 

+ H 
� 
f̂  

2(x, y) 
� 
]/2 
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where
 � � � � � � � 
H	 f̂  

1(x, y) = − P f̂  
1(x, y) log P f̂  

1(x, y) , 
f̂1(x,y) �	 � � � � P f̂  

1(x, y), f̂  
2(x, y) 

I f̂  
1(x, y), f̂  

2(x, y) = − P f̂  
1(x, y), f̂  

2(x, y) log 
P 

� 
f̂  

1(x, y) 
� 
P 

� 
f̂  

2(x, y) 
� 

f̂1(x,y), 
f̂2(x,y) 

3) Change the blur kernal h(x, y) and return to step 1. 
In our problem, we assume that the blur-kernels are Gaussian and are parameterized by their standard 

deviation σ. We iterate over the steps 1 − 3 mentioned above by changing σ. The final estimates of the 
separated layers are the ones that result in the least normalized mutual-information across all the runs. 
For more details, refer to the MATLAB code in the appendix. 

EXPERIMENTAL EVALUATION 

We generated multi-layered images according to equations (2) by combining two sharp images as shown 
in Figure 4. We used σ = 0.7 for the images. The calculated normalized mutual information is shown 
in the Figure 2. We observe that the algorithm correctly estimates σ to be 0.7. The recovered images 
are shown in Figure 4. We find that the image recovery preserves the high-frequency information but 
performes poorly in the low-frequency components. Shown in Figure 3 are the x-gradients for a particular 
row for both, the original image and the recovered image. We find that the gradients are very accurate, 
confirming that the high frequency components are well preserved. The loss in the low-frequencies is 
retained even if the iterations in the algorithm mentioned above were initialized with better estimates for 
f̂  

1(x, y) and f̂  
2(x, y). From these observations, it looks like the loss in low-frequency information can 

be avoided only by using a different approach to solving equations (2) given the blur-kernel. Since our 
algorithm estimates the blur-kernel very accurately, we can use it to estimate σ and then use an enhanced 
solver to solve for equations (2) using the σ estimated by our algorithm. 

We now proceed to test and see if the image separation works when both the transparent layers are 
similar (for example if the 3-D scence that we are imaging is comprised of 2-D scenes that have similar 
patterns). Since the criterion we are using to find the optimal blur-kernel is based on minimizing the 
normalized mutual information between the recovered images, one might suspect that this approach might 
not work well if the images are similar. However, it turns out that when the images are similar, their 
mutual information is already high to begin with and hence the minimum mutual information criterion 
continues to work. Shown in Figure 5 are the results when overlapping portions of the house picture in 
Figure 4 are used as the transparent layers. 

CONCLUSION 

We find that the minimum mutual-information criterion works very well in separating transparent layers 
present in images. An iterative algorithm was presented that uses this criterion for separating the layers. 
There is scope for improvement in the separation quality for the low-frequencies. 
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(a) A house (b) A golf course 

(c) The house is in focus (d) The golf course is in focus 

(e) The recoverd house (f) The recovered golf course 
Fig. 4. The separation of transparent layers in an Image. 



APPENDIX 

MATLAB code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% % 
% This code aims at solving the following set of equations: % 
% % 
% y1 = (g @ f1) . f2 % 
% y2 = f1 . (g @ f2) % 
% % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

f1_color = imread(’../../images/chinese_house.jpg’); 
f2_color = imread(’../../images/golf_course.jpg’);


f1_orig = rgb2gray(f1_color);

f2_orig = rgb2gray(f2_color);


f1_orig = double(f1_orig)/256; 
f2_orig = double(f2_orig)/256; 

g_orig = fspecial(’gaussian’, [3, 3], 0.7); 

y1 = imfilter(f1_orig, g_orig).*f2_orig; 
y2 = imfilter(f2_orig, g_orig).*f1_orig; 

num_iterations = 10;


%%%%%%%% We now search for g with different standard deviations %%%%%%%%%%


sig_range = 0.1:0.1:3;


cross_info = zeros(size(sig_range));


count = 1;


min_mutual_info = 100;


for sig = sig_range


%%%% Begin iterations by initializing f2 = y1 and f1 = y2


g_loop = fspecial(’gaussian’, [3,3], sig);


G_loop = fft(g_loop);


f1 = 0.5*ones(size(f1_orig));

f2 = 0.5*ones(size(f2_orig)); 

mailto:y1=(g@f1).f2


for idx = 1:num_iterations 

%den2 = ifft(G_loop.*fft(f1));

%den1 = ifft(G_loop.*fft(f2));


den2 = imfilter(f1, g_loop);

den1 = imfilter(f2, g_loop); 

%f2 = 0.5*(y1.*(1+(1-den2))).*(1+sign(y1.*(1+(1-den2)))); 
%f1 = 0.5*(y2.*(1+(1-den1))).*(1+sign(y2.*(1+(1-den1)))); 

f2 = (y1./den2); 
f1 = (y2./den1);


end


f1_image = uint8(128*f1);

f2_image = uint8(128*f2);


entropy1 = entropy(f1_image(:));

entropy2 = entropy(f2_image(:));


cross_info(1,count) = mutualinfo(f1_image,f2_image)/(entropy1+entropy2);


if (min_mutual_info > cross_info(1,count))

min_mutual_info = cross_info(1,count);

f1_recovered = f1;

f2_recovered = f2;


end 

count = count + 1; 

end 

f1_image = double(uint8(256*0.7*f1_recovered))/256; 
f2_image = double(uint8(256*0.7*f2_recovered))/256; 



(a) A portion of the house (b) Another portion of the house 

(c) The first portion is in focus (d) The second portion is in focus 

(e) The recovered first portion of the house (f) The recovered second portion of the house 
Fig. 5. The separation of similar transparent layers in an Image. 



MIT OpenCourseWare
http://ocw.mit.edu 

MAS.531 Computational Camera and Photography 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

