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1. Problem 
 
The Differential Mobility Spectrometer (DMS) is a promising technology for 
differentiating biochemical samples outside of a lab setting, but it is still emerging and 
analysis techniques are not yet standardized. 
 
The DMS is a micromachined device that separates compounds based on the difference 
in their mobilities at high and low electric fields (Miller, Eiceman et al. 2000).  (See 
Figure 1.) 
 

 
 
Figure 1.   Mode of DMS detection.  Chemical separation in the DMS is achieved due to an alternating 
electric 
field that is transverse to the direction of carrier gas flow.  Changes in the DC compensation voltage allow 
different compounds to pass through to the detector according to differences in mobilities between the high 
and low fields.  Image from (Krylova, Krylov et al. 2003). 
 



The DMS has been used in laboratory settings for differentiating biologically-relevant 
chemical samples (Shnayderman, Mansfield et al. 2005), demonstrating that different 
bacteria, and even different growth phases of the same bacteria have distinct chemical 
characteristics that the DMS can detect. 
 
DMS technology has even been applied in non-laboratory settings demonstrating its 
potential as a compact, reagent-less, fieldable sensor technology (Snyder, Dworzanski et 
al. 2004). 
 
Analysis of this data is particularly challenging for two reasons: 
1) The high dimensional nature of the data 
2) The difficult link between identifiable data features and specific chemical compounds   
 
Shown here are potential directions and points of consideration for pattern recognition 
problems involving high-dimensional data, with an eye towards selecting features with 
clear chemical relevance from high-dimensional data. 
 
2. Data 
 
The entire data set consists of 100 samples in each of three different classes 
corresponding to the material sampled: Bovine Serum Albumin (BSA), Ovalbumin 
(OVA), and water.  Data were split into a training/testing subset (90%) and a sequestered 
validation subset (10%) randomly.  In the training/testing subset of the data there were  
85 BSA samples, 92 OVA samples, and 93 water samples.  The training/testing set will 
be used to optimize parameters and feature sets, and the validation set will be used to 
validate parameters and selected features. 
 
Each file has 98,000 dimensions corresponding to unique combinations of three different 
variables: scan number, compensation voltage (Vc), and polarity.  When the positive and 
negative spectra are placed next to each other (even though they are recorded at the same 
time), each data file can be thought of as a matrix, the entries of which vary in two 
dimensions, uniquely, according to the chemical composition of the sample.  (See Figure 
2.) 
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Figure 2.  Example Data Sample.  Compensation voltage is on the vertical axis and  scan number  (elution 
time)  
is on the horizontal axis.  The positive and negative spectra are placed next to each other horizontally,  
for visualization purposes, but as their scan numbers indicate, the data were collected simultaneously.   
(A) indicates the Reactant Ion Potential (RIP), and (B) indicates some chemical features which may be of  
interest from a classification perspective as well. 
 
The color represents sensor output values; the noticeable horizontal line (A) at 
compensation voltage -15 is the Reactant Ion Potential (RIP).  It is mostly an artifact of 
the carrier gas with which the sample travels through the system.  It is not hypothesized 
to yield relevant chemical data.  The activity of interest seems to occur at compensation 
voltages of -14 and higher.  These data have already been trimmed for relevance in the 
time domain, but an additional trimming here in the voltage domain could be beneficial 
in that it will help to remove from consideration nearly half of the remaining features.  
 
All of the data have been pre-processed prior to this analysis.  They have been trimmed in 
the time domain in addition to having been background-adjusted so that the baseline 
value is common across all samples. 
 
The biggest pattern recognition problem here is the curse of dimensionality.  The 
dimensionality of each sample is about 98,000 and there are 100 samples per class.  The 
challenge is to create a system/classifier that given an input can determine the underlying 
class of that input--i.e., diseased or not diseased, with accuracy, given limited 
space/memory and limited time.  This is a problem that is common in different biology 
applications (such as DMS, mass spectrometry, and microarray analysis).  



3. Approaches 
 
Feature selection has been performed on the training/testing data set so far with two 
approaches:  
1. Two-class Fisher Linear Discriminant 
2. PCA 
 
In all cases, 50 features were selected from the data, and classification was performed 
with a range of numbers of features, between 1 and 50, to demonstrate trends in 
classification as the number of features used is changed.  Additionally, features were 
selected at a range of radial distances from previously selected features (measured in 
scan-Vc space pixels).  This was done to decrease the degree of correlation between 
selected features.  The specific numbers of features and radial distances were: 
Number of features used:  [1 3 5 10 20 30 50] 
Radial distances used: [1 2 3 5 8 10] 
 
Classification has been performed with SVM (polynomial kernel) and K-Nearest 
Neighbors (K-NN) with a range of values for K: 
Values for K: [1 3 7 11] 
 
 
  3.1 Fisher Discriminant, Two-Class (FLD) 
 
For each pixel, the Fisher Linear Discriminant was calculated as indicated in Equation 1 
(Duda, Hart et al. 2001).  Pixels were considered as potential features and the features 
with the highest discriminant values were retained.   
 
        (1) 
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Where μ represents the mean of the pixel values across all samples and σ2 is the variance 
of the values.  The maximum values were between 1 and 1.5 and the range of values can 
be seen in Figure 3.    
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Figure 3.  Histogram of the top 50 Fisher Linear Discriminant values.  In the first cross-validation loop 
of the  two 
class comparison between BSA and OVA.  The higher the discriminant value, the more separable the two 
classes.   
 
The features with the highest Fisher Linear Discriminants are sent to the classifier for 
classification.  However, in many cases, these features are not independent.  Each pixel is 
a potential feature, but as can be seen in Figure 2, chemical features encompass a range of 
scans and compensation voltages.  Potential features which are near to each other (in scan 
number and compensation voltage) are more likely to be correlated (in their information 
content).  For this reason, beyond the two-class FLD, a radius restriction measure was 
implemented forcing selected features to be a certain radial distance (in scan-
compensation voltage space) from previously selected features.  A range of radius values 
were used between 1 (no restriction) and 10.  As can be seen in Figure 4, features chosen 
with no radius restriction tended to be grouped together.  These groups likely correspond 
to single chemical features in the signal.  With a restriction radius of three (see Figure 5), 
there was still some grouping around chemical features, but additional chemical feature 
groups were included.  Whereas with no restriction 50 features were in 5 groups, with a 
radius of three there were about 14 groups.  With a radius of 10 (see Figure 6) there are 
about as many groups as features, but the quality of the features becomes more 
questionable.  With such a large radius, the FLD value of the last chosen features 
becomes quite low, and anecdotally, some features appear more as though they are in a 
background portion of the signal. 
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 Figure 4.  Top 50 FLD feature locations with no restriction on feature location.   Features 

were drawn from the entire spectral set shown (both positive and negative), across all scans and 
compensation voltages.  
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Figure 5.  Top 50 FLD feature locations with 3 unit restriction on feature location.  Features 
were drawn from the entire spectral set show (both positive and negative), across all scans and 
compensation voltages, but were forced to be at least three units apart in the resolution of the scan-
compensation voltage space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6.  Top 50 FLD feature locations with 10 unit restriction on feature location.  Features were 

drawn from the entire spectral set show (both positive and negative), across all scans and compensation 
voltages, but were forced to be at least three units apart in the resolution of the scan-compensation voltage 
space.  

 
 
 
                                3.2 Principal Component Analysis (PCA) 
 
A dimension reduction approach was implemented using PCA.  Rather than selecting 
specific pre-existing features, PCA extracts features from the original data, making linear 
combinations of potential features resulting in a feature set with lower dimensionality 
than the original feature set.  In this case, however, features with clear chemical identity 
were desired, so a traditional PCA approach was modified to create a feature selector that 
would yield specific (scan number, Vc) points. 
 
The eigen-decompisition step of PCA is space/memory intensive.  In order to make this 
feasible, the dimensionality of the data had to be further reduced prior to feature selection.  
First, a subset of the data was selected in scan-Vc space (see Figure 7).  Then, further 



reduction was achieved by down-sampling this space until fewer than 5,000 dimensions 
remained (out of an original 98,000.  
 
 

 
 
Figure 7.  Feature space covered by PCA analysis.  This space includes about 21,000 out of 98,000 
potential features from the data displayed.  This number of potential features had to be further reduced 
in order to perform PCA because of space and memory constraints.  To further reduce the potential 
number of features, this space was evenly sampled.  
 
 
 
Because chemically-relevant features were desired, PCA results were used as a means to 
select specific (scan, compensation voltage) coordinates as features.  The majority of the 
variance was explained by one eigenvalue (see Figure 8).  The top-ranked 
eigenvalue/eigenvector pair explained 70 percent of the variance, and the second pair 
explained only slightly more than 3 percent of the variance.  Due to this, only the 
eigenvector coefficients from the first pair were used for feature selection (see Figure 9).  
However, because there are still almost 5,000 coefficients, only the top coefficients were 
used.  Features were selected corresponding to the magnitude of the coefficients in this 
eigenvector.  Features, generally came from the five different groups (A, B, C, D, and E, 
see Figure 9), but were not specifically forced to be distributed among these groups. 
 
 



 
Figure 8.  Percent of variance explained by top several eigenvectors.  The top eigenvector explains 
a bit over 70% of the variance whereas the second eigenvector only accounts for slightly more than 3%  
of the variance.  
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Figure 9.  Eigenvector coefficients for top eigenvector.  These coefficients explain 70% of the 
variance of the distribution of (training and test) data.   Some sets of high coefficient feature 
indices are consecutive (A,B,C,D) while another has a sinusoidal nature (E).  This likely indicates 
features which are either more oriented along the scan- or Vc-axes. 
 
  3.3 Sequential Forward Selection (SFS) 
 
Sequential forward selection was implemented using a correlation coefficient-based 
objective function.  Sequential forward selection chooses features one at a time, at each 
point, finding the next feature that maximizes the objective function with respect to that 
potential feature and the previously chosen features (Gutierrez-Osuna).  This has the 
disadvantage of needing to compute the objective function result for each of the tens of 
thousands of potential new features, in addition to the disadvantage that once a feature is 
added, it cannot be removed.  (Subsequent instantiations of this feature selection 
technique such as Plus-L Minus-R Selection and Sequential Forward Floating Selection 
begin to address the second disadvantage listed previously.)  The advantage of this 
method is that information regarding how a new feature would interact with the already 
chosen group is considered. 
 
Because a calculation is made for each potential feature, the processing time required by 
this algorithm is tremendous.  Due to time and space concerns, this algorithm was limited 
in the scope of the features it could consider, similar to PCA, as described above.  
Specifically, the physical extent of the features was limited to those in the red box in 
Figure 7, and that space was further down sampled to limit the number of features 
considered to be no more than 5000.   
 
The objective function used in this case is illustrated below in equation 2. 
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Where YM is the feature set with M features, ρij is the correlation between features i and j, 
and ρic is the correlation between feature i and the class labels, c.  At each choice to add 
another feature, this technique should choose the feature that maximizes the sum of the 
correlations between the class labels and each feature individually while minimizing the 
sum of the correlations between all combinations of features chosen.  So, a feature which 
is more highly correlated with class labels is more likely to be chosen, and a feature 
which is less correlated with already selected features is more likely to be chosen.  The 
objective function value should increase as features are selected which are correlated with 
class labels but not with each other, and then decrease, as subsequent features are either 
less correlated with class labels or more correlated with previously chosen features.  In 
the BSA vs. OVA comparison task, the objective function values evolved as is shown in 
Figure 10.   



 
Figure 10.  Objective function values for Sequential Forward Selection in BSA vs. OVA.   The peak of 
this  
curve is marked and occurs at 4 features.   
 
 
In this method of feature selection, the ideal feature set would be that represented by the 
peak of the objective function.  As can be seen in the results section below, for the sake 
of consistency, classification has been performed for a consistent number of features 
across all techniques, in this case, going far beyond the peak here at four features.  See 
section 4.3 for results.  It is interesting to note that the drop off in performance as 
demonstrated by the objective function is drastic, seeming to indicate that classification 
performance with 20 or more features may be worse than performance with one feature.  
In reality, this would depend  on the size of the training set data and the nature of the 
classifier. 
 
4. Results and Discussion 
 
The results shown here represent 4-fold cross-validation results on the training/testing 
subset of the data.  Each feature selection method was used to select 50 features under a 
range of radius restriction rules as described earlier.  Results for a specific binary 
comparison, feature selection method, and classification method are shown in each plot.  
Percent correct classification is shown as a function of both the number of features 
selected and submitted to the classifier and the radius restriction that was implemented.  



A radius restriction of one (the blue diamond) is the same as making no restriction on 
feature location.  The baseline level of comparison for these binary tests is 50% correct 
classification, the bottom of the vertical scale shown here.  Black error bars have been 
used here to demonstrate the variance around each point across the four cross-validation 
folds.  In most cases, the variance was less than 1% and the error bars cannot be seen.  In 
all cases, classification was performed with Support Vector Machines (SVM) in addition 
to K-Nearest Neighbors (K-NN) with a range of K values.  Note that for each 
classification task within a particular feature selection technique, the sets of features 
submitted to the classifiers were the same.  That is, the feature set was determined by the 
parameters relating to the feature selection technique, the number of features, and the 
radius restriction rule, but not by the classifier itself.  Therefore, all comparisons within a 
classification task between classifiers, are direct comparisons. 
 
4.1 FLD 
 
The two-class Fisher Linear Discriminant was calculated for each potential feature (scan-
compensation voltage point) independently and the features with the top FLD values 
were chosen, as detailed above.  Some interesting trends can be seen in Figure 11 and 
Figure 12 which document classification results for the SVM and K-NN, K=7 classifiers, 
respectively.  First, both classifiers demonstrate a great ability to discriminate between 
water and BSA, with typical results above 90% correct classification and the highest 
results above 95% correct classification.  Second, for both classifiers, the accuracy shows 
a slight increase as additional features are added but stops increasing or even decreases 
after a certain number of features is exceeded.  This is likely due to overfitting, because 
with 50 features, the classifier might be making a 50-dimensional decision boundary, but 
this is really only a two-class decision.  In the case of the SVM classifier, the lower 
performance, or the inability to improve performance with the additional features may 
also be due to a relative lack of training data.  As the dimensionality of the decision space 
(corresponding to the number of features used) increases, the concentration of training 
points in that space decreases making the calculation of a specific decision boundary 
more difficult.  This is related to the first issue in that the sparsely populated decision 
space will be more likely to precipitate a boundary that crosses a dimension where the 
training data for the two classes happen to be different, but that in reality is not relevant 
to the decision at hand.  More recent feature selection methods have tried to address this 
question by applying false discovery rate controlling methodologies from the statistical 
fields (Reiner, Yekutieli et al. 2003).  Third, higher radius restriction leads to equal or 
higher classification results, to a point.  This is especially evident in the SVM results of 
classification with 30 features.  As can be seen there, with the exception of the highest 
radius restriction rule, the classification percentage is according to the radius restriction 
rule; that is, the features selected with no restriction performed the worst (about 88%) and 
the feature selected with an enforced distance of 8 between the features performed the 
best (about 98%).  In the K-NN results the differences are not as extreme, but it is clear 
that the feature set selected without any restriction does not perform as well as the others.  
It should be clear that this benefit in performance comes with minimal added cost in 
processing time since the calculations necessary depend only on the features already 
selected as opposed to the features which could be selected.  In a high-dimensional data 



set, or one with many, many potential features, this is extremely significant.  While 
methods which compute the interaction of selected features and classification abilities of 
entire subsets (rather than individual features) may yield more accurate results, this 
method of selecting features in part based on location in order to reduce correlation in the 
feature set delivers a lot of classification ‘bang’ for the processing ‘buck’. 
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Figure 11.  Classification Performance for Water vs. BSA (SVM) FLD feature selection.  Note that 
classification improves as features are added, until about 30 features.  Also, note that classification at this 
point is generally better with a higher radius rule, likely because selected features are not as correlated. 
 
 



Pcc: H2O vs. BSA (K-NN, K=7)
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Figure 12.   Classification Performance for Water vs. BSA (K-NN, K=7) FLD feature selection.  Note 
that performance and trends are generally to similar to those with SVM (see Figure 11). Classification 
improves as features are added, until about 30 features.  Also, note that classification at this point is 
generally better with a higher radius rule, likely because selected features are not as correlated. 
 
 
A summary of the results from FLD feature selection for all classification tasks can be see in  
Table 1.  Unsurprisingly, the classifiers performed better on the tasks distinguishing 
between protein and water than on the classification task distinguishing between one 
protein and another protein.  Over the range of parameters tested here, the performance of 
the K-NN classifier and the SVM classifier were similar in the last classification task, 
though, here, for this particular subset of parameters, the K-NN classifier performed 
better. 
 

Summary of FLD classification results
At r=3, 30 features  
   

Comparison SVM K-NN, K=7 
H2O vs. BSA 93% 94%
H2O vs. OVA 96% 95%
BSA vs. OVA 83% 88%
 
Table 1.  Classification Performance Summary for FLD feature selection.  These are results of 
classification with 4-fold cross-validation on the training/testing data set.  The K=7 K-NN classifier was 
chosen as a point of comparison for the SVM results. 
 



4.2 PCA 
 
The vector coefficients of the first principal component of the test data were used to rank 
potential features and select the top 50 features as detailed above.  Interestingly, the top 
coefficients did not have the same discrimination ability as those chosen by FLD (the 
performance was worse), though after the addition of fifty features, the performance was 
nearly comparable (see Figure 13).  Further, the trends evident in the FLD results, are not 
as evident in the PCA results.  First, the ability to discriminate between protein and water 
is good but not great, with results between 85% and 90% correct classification (see Table 
2).  This is in contrast to FLD results above 90%.  Second, the classification success 
increases as features are added without indicating a leveling-off, much less, a decrease in 
classification rate.  This is also the case for the SVM classifier in this classification task.  
In the other classification tasks, the general trend was increased performance with 
increased number of features and a leveling off after 30 features was the exception to the 
rule.  Third, there does not appear to be an affect of radius restriction rule on K-NN 
classification with the PCA selected features.  With FLD, some effect was observable 
with K-NN classification, but it was stronger with SVM classification.  Here, too, SVM 
classification demonstrates a trend more readily than K-NN, though it is not as clear as 
with the FLD selected features.  In particular with K-NN, it seems that number of 
features has a greater impact on classification result than radius restriction enforced.  It is 
interesting to see that the K-NN ‘decision boundary’ does not seem to become less robust 
as there are an increasing number of dimensions across which to calculate the nearest 
neighbors, but not an increasing number of training data available to populate the 
decision space.   
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Figure 13.  Classification Performance for Water vs. BSA (K-NN, K=7), PCA feature selection.  
Compare to results with FLD feature selection (Figure 12).  Trends are similar, though classification 
accuracy is not as good, in comparison. 
 
A summary of the results of classification for all three classification tasks using features 
dictated by PCA can be seen in Table 2.  Interestingly, the results for the tasks comparing 
water and protein are not as different from the protein-protein comparison results as with 
FLD feature selection.  Classification on the PCA-selected features in the protein-protein 
task did just about as well as with FLD-selected features in the same tasks, but the water-
protein classification results are lower than with FLD.   
 
 

Summary of PCA classification results
At r=3, 30 features     
      

Comparison SVM K-NN, K=7    

H2O vs. BSA 88% 90%    

H2O vs. OVA 84% 88%    

BSA vs. OVA 85% 86%    
Table 2.  Classification Performance Summary for PCA feature selection.  These are results of 
classification with 4-fold cross-validation on the training/testing data set.  The K=7 K-NN classifier was 
chosen as a point of comparison for the SVM results. 
 
 
4.3 SFS 
 
Sequential Forward Selection was implemented with a correlation coefficient-based 
objective function, as detailed above.  It is important to note that of all of the techniques 
implemented, SFS took the most processor time, by far.  Results that took other feature 
selection classification scripts on the order of 20 minutes to complete took this feature 
selection classification script on the order 10 hours to complete.  Due to processing time 
necessary, this may not be a viable alternative for high-dimensional data sets, unless time 
is really not an issue.  That being said, the trends that resulted from SFS feature selection 
would not recommend it in any case.  Because they are so different, they are discussed 
outside of the framework of the previous two feature selection methods.  Classification 
performance from the Sequential Forward Selection based features was dismal, barley 
above, and sometimes below the baseline performance of 50% that would be expected 
with random class assignments.  For all classifiers, no trend was observed with respect to 
radius restriction rule.  The trends observed with respect to the number of features used 
were unique and merit further discussion.  In classification with SVM (see Figure 14), 
classification performance was extremely low for all numbers of features (below 60%), 
but worse for 20 or more features, and decreasing as the number of features were added 
beyond 10.  In classifying the data based on the same feature set using K-NN, K=1 
(Figure 15) the results were above 90% for one feature, but decreasing and below 60% 
for all other numbers of features.  In the K-NN, K=7 classifier (Figure 16), the same 



feature sets were classified with a more familiar trend of improving classification rates as 
more features are added between 0 and 10 features and decreasing classification rates as 
features are added beyond 20 features.  However, the maximum classification rate here is 
about 63% at 10 features and the results are below 60% for 1, 3, 30, and 50 features.  In 
part, this trend may indicate the ability of the SFS algorithm to choose a good initial 
feature but that subsequent features do not provide information that is ‘good’ for the 
purpose of these classifiers.  The first feature may indeed be good despite the low SVM 
performance, because, as it has been observed in the past, SVM does not perform as well 
with 1 feature as it does with 5 to 10 features.  Further the first feature which SFS 
selected as having the best correlation with the class labels may have relatively low signal 
strength/amplitude, so that it is easily drowned out when the dimensionality of the feature 
space is increased to accommodate other features with lower correlation but higher signal.  
This explanation does not immediately clarify why the performance of the K-NN, K=7 
classifier was so much less than the K-NN, K=1 classifier for 1 feature, and this remains 
a point of further investigation.  
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Figure 14.  Classification Performance for Water vs. BSA (SVM), SFS feature selection.  Compare to 
results with FLD feature selection (Figure 11) and SFS objective function value trend (Figure 10).     
 
 



Pcc: H2O vs. BSA (K-NN, K=1)
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Figure 15.  Classification Performance for Water vs. BSA (K-NN, K=1), SFS feature selection.  
Compare to results with SVM 
classification (Figure 14) and K-NN classification, K=7 (Figure 16). 
 

Pcc: H2O vs. BSA (K-NN, K=7)
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Figure 16.  Classification Performance for Water vs. BSA (K-NN, K=7), SFS feature selection.  
Compare to results with FLD feature selection (Figure 12) and PCA feature selection (Figure 13).   
 



A summary of the results of classification results with the SFS-selected features can be 
seen in Table 3.  Generally, it seems as though the features selected did permit 
classification between protein and water somewhat better than the baseline (around 60%) 
while classification between the two protein classes was not achievable with the K-NN 
classifier and was minimally achievable with SVM.   
 
 

Summary of SFS classification results
At r=3, 30 features     
      

Comparison SVM K-NN, K=7    

H2O vs. BSA 57% 59%    

H2O vs. OVA 63% 63%    

BSA vs. OVA 57% 46%    
Table 3.  Classification Performance Summary for SFS feature selection.  These are results of 
classification with 4-fold cross-validation on the training/testing data set.  The K=7 K-NN classifier was 
chosen as a point of comparison for the SVM results and for results of other feature selection methods. 
 
 
Overall, it is interesting to note that the feature selection method that took the most 
investment in terms of processor time yielded in fact the worse results, indicating in a 
cautionary way, that methods which seem like they may be the most comprehensive in 
some ways are not guaranteed to perform the best unless it is clear that they are explicitly 
the best for the data to be classified.  Further, it is possible to use somewhat naïve models 
of feature distribution in forming selection techniques that are both reasonably fast and 
effective (like the radius restriction rule discussed here). 
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