
MIT OpenCourseWare 
http://ocw.mit.edu 

MAS.632 Speech Interfaces and Mobile Devices 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Using Speech Recognition


The previous chapter offered an overview of speech recognition techniques and 
the difficulty of identifying the words in a speech signal. This chapter discusses 
how speech recognition can be used in applications. It examines the merits as 
well as the constraints of using voice input, which limit the classes of applications 
for which it is suitable. Because the dominant difficulty with using speech recog
nition devices is usually their poor performance, this chapter emphasizes inter
action techniques to manage recognition errors. Finally, several case studies in 
applications of voice input are detailed. 

USES OF VOICE INPUT 

Voice input can be suitable to an application for one of several reasons. In some 
circumstances, no other input channel may be available due to the lack of an 
interface device such as a keyboard or mouse. Even when alternative input 
devices are available, speech recognition may be more efficient; we can speak 
faster than we write or type. Voice can also be employed effectively when the 
user's hands and eyes are occupied with another task. 

Sole IW,1 Cannal


Regardless of its limitations, voice input is useful when no other input mode is 
available or when alternative modes present only limited functionality. For this 
reason, speech recognition currently attracts wide interest from the manually



155 Using Speeh Reognilion 

disabled population for whom conventional keyboards and mice are extremely 
demanding. 

For many telephone-based voice applications such as those described in Chap
ter 6, the 12 button keypad is sufficient. Speech recognition can be employed 
instead of or in addition to touch tones to provide access to a greater number of 
commands, to make it easier for the caller to remember them, and to enable users 
to phone in from rotary-dial telephones. Although speech recognition provides a 
more flexible interface, it is also significantly limited in this context. Because of 
the limited bandwidth of the telephone audio channel, both high and low fre
quency sound is lost, removing some cues useful to acoustic classification. 
Although the quality of telephone networks is improving, some calls, such as from 
cellular phones, contain significant noise. Even when the telephone circuit itself 
introduces no noise, users of telephone-based services are often travelers calling 
from public telephones in noisy locations. Also, as discussed in Chapter 6, 
because the telephone circuit mixes both the transmitted and received speech it 
is difficult for the user to interrupt and be correctly recognized. 

Speech recognition has been used in a number of telephone-based services 
usually employing small vocabulary speaker-independent recognition because 
the identity of the caller is not known. An alternative approach uses speaker-
independent recognition or touchtones for the caller to "login" and then loads that 
caller's personal vocabulary into the recognizer for the remainder of the call. 
Some examples of telephone-based recognition are listed here. 

" Telephone-based financial services. A caller enters an account num
ber by voice and is told the current trading level of stocks in his or her 
portfolio or speaks code numbers for a specific stock to hear its price. 
Because speaker-independent recognition is often limited to the dig
its zero through nine plus "yes" and "no," it has not been possible 
until recently to use a more convenient interface that allows the user 
to speak stock names. 

" Automatic directory assistance for pay-per-use telephone services. 
Voice menus list the types of services one can call, and the user 
selects one by speaking choices while traversing the menu. The appli
cation then gives a telephone number for access to the chosen service. 

* 	 Automated collect call completion. The calling party is prompted 
to record his or her name. A computer phones the called party, 
announces the requested collect call, plays the recording of the caller 
identifying herself, and then asks whether the charges will be 
accepted. The words "yes" and "no" are recognized; failed recognition 
results in transfer to a human operator for confirmation. 

Speech recognition has enormous potential as the primary means of interact
ing with new generations of very small hand-held computers. Improvements to 
laptop computers are mostly in performance; a full keyboard suitable for touch 
typing places limits on further size reductions. A number of "palm top" comput
ers provide applications such as a calendar and telephone directory but are lim
ited in the amount of data input allowed by their tiny keys. An all-voice 



156 VOICE COMMUNICATION WITH COMPUTERS 

computer, perhaps including a small touch-sensitive display, could be built in 

a package similar to a miniature tape recorder. At the time this book is being 

written several manufacturers have introduced families ofintegrated circuits for 

digital consumer answering machines; these inexpensive parts are also suitable 

for a pocket computer. 

Auxiliry InputCanel 

Speech recognition is useful as an input channel even when a keyboard is 

available, i.e., when speech is not the only possible means of interacting with a 

computer.' 
Limited vocabulary speech recognition has been used for a variety of applica

tions in which it essentially substitutes for the keyboard; for a survey of such 

comparisons see [Martin 1989]. In many traditional screen and keyboard appli

cations such as authoring computer programs, speech recognition has not yet 

offered a great advantage over keyboard input. However, speech has proven effec

tive in applications in which the user's hands and eyes are otherwise busy, such 

as baggage sorting, examining printed circuit boards for defects, and entering the 

results of visual analysis of specimens under a microscope. Speech input is attrac

tive in such situations because of the inconvenience of putting down the object of 

one's attention for the sake of using the hands on a keyboard. 
A particularly strong motivation for voice input is our ability to perform mul

tiple tasks simultaneously if we can employ multiple input modalities. As dis

cussed in some detail in Chapter 6, dividing tasks between verbal and manual 

channels can result in increased effectiveness and speed by a user. Voice input 

has particular importance for computer workstations because users are already 

using a keyboard and often a mouse for a variety of tasks. Computer users are 

usually occupied manually by typing or using the mouse and visually by the com

puter display. Although a good typist does not watch his or her hands, most com

puter tasks involve interacting with data, text, or an operating system for which 

visual feedback is essential. Because the mouse is used for relatiuepositioning, 

it cannot be operated without attention to the screen. Computer users also often 

perform multiple tasks in parallel, especially if multiple phases of the same 

application, such as using a menu and typing data, are considered to be separate 

tasks. 
Computer users, then, can take advantage ofvoice input for both reasons: being 

otherwise occupied manually and visually and performing multiple tasks in 

parallel. In Chapter 6 the same arguments were made to justify potential advan

tages of voice output. Martin [Martin 1989] demonstrated that for a computer-

aided design task involving extensive use of display, keyboard, and mouse, 

experienced users were able to get more of their tasks done while spending less 

time looking at the screen when voice input was added. These results motivated 

'The "listening typewriter" is a special case of keyboard replacement which will be dis

cussed in the next section. 



151 Ung Speech Roglon 

Xspeak, a Media Lab interface using speech recognition for navigation in a win
dow system, which is described as a case study later in this chapter. 

Another potential use of voice as an auxiliary channel of user input is interact
ing with a computer at a small distance. A user might wish to start issuing com
mands such as logging in or initiating a time-consuming task such as sorting 
electronic mail while walking into the office and hanging up his or her coat. 
Unfortunately, few recognizers can perform adequately under the highly variable 
acoustic conditions occurring while the talker moves about in an office, but it may 
be feasible to electronically "point" an array of microphones at the mobile sound 
source.


Voice input can also be found in commercial products to speed-dial telephone 
numbers. The user trains templates and enters the associated digits using the 
telephone keypad. The user later places a call by picking up the handset and 
speaking the name to call. Since the caller is about to speak into the telephone 
during the call, voice-dialing is an intuitive extension of the voice modality. For 
speech recognition, the telephone handset microphone is well positioned with 
respect to the mouth; picking it up provides the cue to begin recognizing. 

Keyboard Rplacement 

The previous section argued that there are situations in which speech recognition 
may be a useful supplement to the keyboard because of other activities a user 
needs to perform manually. This section considers the potential of speech recog
nition as a direct keyboard replacement for the purpose of text entry. Although 
dictation is in many aspects the antithesis of conversational interactive systems, 
such a "listening typewriter" is the subject of much speech recognition research 
and the focus of several attempts to develop recognition products. 

A listening typewriter may offer several advantages over a keyboard. We can 
speak significantly faster than we can write or type; we usually speak at several 
hundred words per minute; an excellent typist can produce 80 or 100 words per 
minute, and we handwrite at less than half that rate. Of course many of us are 
not efficient typists, and some professionals are quite adverse to using a key
board. Even efficient typists may suffer from physical disabilities that interfere 
with productivity. 

At first glance, speech recognition seems to be a superb keyboard replacement. 
We could imagine such a device useful in any number of large vocabulary com
puter applications, but we must consider a number of factors in assessing the 
utility of the listening typewriter. Can speech recognition devices take full advan
tage ofthe faster rates of speaking over writing? What portion of the time needed 
to create a document is consumed by the text input stage? How difficult is it to 
learn to dictate, and are dictated documents of comparable quality to written 
ones? Finally,just how extensible is the listening typewriter? 

Large vocabulary speech recognition by machine is extremely difficult. As the 
number of words stored in memory increases, there is an increased likelihood 
that words will be confused, and pattern matching to select which word was spo
ken will take correspondingly longer as well. Because a large number of words 



In VOICE COMMUNICATION WITH COMPUTERS 

may be spoken at any time, word boundary detection is also confounded: As a 

result many very large vocabulary systems are being developed using isolated 

word recognition. 
Although there are several products and a number of research projects offering 

some degree of large vocabulary recognition, this work is not yet mature enough 

to allow an assessment of speech effectiveness for text entry using these devices. 

The number of similar sounding words confounds recognition in large vocabular

ies.As a result, current recognizers operate either in less than real time or are 

constrained to isolated word recognition. But insights into the utility of speech for 

text input can be gained both from simulations in which a hidden human per

forms the voice-to-text transcription in real time and by studying how people dic

tate. Much of the research in this area was done in a series of experiments by 

John Gould at IBM, who studied dictation as well as simulated listening type

writers. 
In one study focusing on the difference between speaking and writing letters, 

Gould found that speaking required 35% to 75% of the time required for writing 

and that across both media about two-thirds of the time was spent in planning 

[Gould 821. In another study, Gould determined that although people thought 

their written letters were of better quality, independent judgments did not show 

this to be true [Gould and Boies 1978]. This work and a similar study [Gould 

1978] suggested that dictation is not a difficult skill to acquire. 

Gould then provided a simulated listening typewriter to subjects who used it to 

dictate letters [Gould et al. 1983]. He wished to evaluate the importance of vocab

ulary size as well as the constraints of discrete versus connected speech input. A 

human transcriber behind the scenes played the role ofthe speech recognizer and 

enforced interword pauses for discrete input mode. Depending on the selected 

vocabulary size, the transcription software determined whether each word 

should be "recognized." The subject was required to spell an unrecognized word 

letter by letter. The subjects included both expert as well as naive dictators. 

Gould measured the composition time and evaluated the quality of the letters 

produced by his subjects who used the simulated recognizer. He found that by 

both criteria speaking letters was comparable to hand writing them. The fact that 

expert subjects (experienced with dictation) were not significantly faster than 

novices suggests that the experimental setup was not as efficient as simple dicta

tion; using any of the simulated technologies, someone talking to a computer was 

slower than speaking into a tape recorder. 
Although Gould's subjects preferred connected over discrete speech, the differ

ence was not as large as one might expect given the requirement to pause 

between each word. This may be due in part to the nature of the experiment. In 

one task, subjects were required to write a final draft version of a letter. Ifthe rec

ognizer made an error, the user's only recourse was to back up and delete each 

intervening word, replace the misrecognized word and then repeat all the deleted 

words. This may have encouraged subjects to pause between words until each 

recognition result was displayed on the screen, even while using the connected 

speech mode. This may also partially explain why expert dictators did not per

form as well as might have been expected, given their experience. 



159 Using Speeh Recogniion 

What do Gould's studies indicate as to the suitability of speech as a keyboard 
replacement? It seems easy to learn to input text by voice, and the resulting doc
uments are of equal quality to those written or typed. Although isolated word 
recognition is significantly slower than connected recognition, it does appear to 
have utility and may be acceptable in an office environment. But there is more to 
writing a passage than entering words. Although speaking may be five times 
faster than handwriting and two to three times faster than an experienced typist, 
composing a letter takes a significant portion of the time spent creating a docu
ment, thus diminishing some of the speed improvement afforded by voice input. 
After initial authoring, documents may require editing, which Gould noted is eas
ier with handwriting. Some editing functions such as moving a cursor to select a 
region of text may be awkward to perform by voice, and it is a challenge for the 
recognizer to detect when the user wants to switch between text input and edit
ing.2 Finally, it must be noted that although Gould's studies compared voice to 
handwriting, typing is becoming an increasingly common skill and is much faster 
than handwriting (although still much slower than fluent speech). 

Despite these objections, the listening typewriter would still undoubtedly be 
useful for some users and in some work environments. Research in this direc
tion hastens the arrival of large vocabulary general purpose recognizers as well. 
However, specific assumptions about the structure of written language used to 
constrain the recognition task may render the recognizer less useful for other 
potential applications. For example, the language, or sequences of words, that a 
user would speak to a computer operating system would possess its own unique 
syntax very different from the business correspondence used to seed the tri
gram probability tables. In addition, operations such as selecting a file name 
or entering the name of a new file to be created much less constrain the choice 
of the next word than natural languages and therefore are harder to recognize. 
The terseness of text-based computer interfaces is efficient for the skilled user, 
but by removing redundancy they comprise a more difficult language for recog
nition. 

This section has considered the production of text documents by voice in con
trast to keyboard or handwritten input. Voice as a document type was considered 
in depth in Chapter 4. Although dictation and using a speech recognizer instead 
ofa keyboard are similar tasks, both involve quite different authoring styles than 
recording short voice memos that are never converted to text. Comparisons of cre
ation time with quality across voice and text documents may not be very mean
ingful as the document types are most likely to be used for rather different styles 
of messages. 

2To achieve acceptable rates of recognition with such large vocabularies, recognizers 
must take advantage of the context in which the word occurs. The requirements imposed 
by assumptions of context, both preceding and following the word just spoken, interfere 
with providing immediate editing commands. For example, the Tangora recognizer 
described in the previous chapter does not report a word as recognized until at least one 
additional word has been spoken to afford adequate context for effective recognition. 



160 VOICE [OMMUHICATION WIITH OMPUTERS 

SPEECH RECOGNION ERRORS 

The primary limitation of speech recognition is the accuracy of current recogniz

ers. As a result, coping with errors dominates user interaction techniques. The 

difficulty of recognizing speech further limits the range of applications for which 

it is suitable. Accuracy is so impaired by noise that speech recognition can be used 

only with great difficulty in even moderately noisy environments or over 

impaired communication channels such as cellular telephone connections. Speech 

recognition applications must operate with smaller vocabularies, making it diffi

cult to support broad functionality, in order to attain acceptable recognition rates. 

Even the most simple application must deal with recognition errors; for complex 

applications error detection and correction may require more programming than 

the portion of the application that actually performs the user's suggested action. 

.ssesof Recogit Errrs 

Speech recognition errors may be grouped into three classes. 

1. 	 Rejection: The talker speaks a word from the recognizer's vocabulary 

but it is not recognized. 
2. 	Substitution:A word spoken from the vocabulary is recognized as 

some other word. 
3. 	Insertion: Extraneous words are recognized in response to stimuli 

such as the talker's breathing or lip smacking or perhaps environ

mental noise such as a door slam or keyboard clicks. 

Different strategies are required for coping with each type of error. All errors 

more likely to occur when using connected recognition, large vocabularies,are 
and speaker-independent devices. Because of rejection and insertion errors, a 

connected recognizer may even report incorrectly the number of words spoken in 

addition to making a substitution error on any particular word. 

Users want the best recognizer they can buy; however, it is very difficult to 

measure error rates of a particular device. Error rates will be a function of the 

background noise level, the vocabulary set, the speaker's cooperation, attitude, 

and experience. Most manufacturers claim recognition accuracy in the high 90% 

range, but these rates are unrealistic and rarely realized in practice. Accuracy 

measurements across recognition devices are a meaningless basis for comparison 

unless the same test conditions are reproduced for each measurement. This 

requires using a standardized test, with both test and training data taken from 

the same audio source, e.g., a test tape or CD. 
Real users rarely achieve the rates claimed for a device by the vendor. Reduc

ing accuracy to a single metric can be misguided because rejection, substitution, 

and insertion errors may have different impacts on the underlying application. 

The difference between 95% accurate recognition and 98% may be very signifi

cant in terms of the difficulty in improving the recognition algorithm (to halve 

the error rate), but this reduction is much less significant for user interface 

design; in both cases, the recognizer is correct most of the time but makes occa



Using 161Spech Rewgniion 

sional errors. The speech input interface still has to cope with errors or it will 
have little utility. 

Factors Iduending the Erro Rate 

Recognition errors are caused by many factors; some are more obvious than oth
ers. Techniques can be employed to minimize errors, so it is important to recog
nize early in a design what factors are likely to contribute to an increased error 
rate. Understanding the causes oferrors also helps us appreciate why some appli
cations are more amenable to speech input than others. The necessity of detect
ing and correcting errors precludes the use of recognition from some applications 
where it may seem ideal at first glance. 

Wed Smi~ity 

Words which sound similar, such as "bat" and "bad," are difficult for humans to 
distinguish, so it should not be surprising that they are also frequently confused 
by a speech recognizer. Without a thorough understanding of the acoustic repre
sentation used by the recognizer, it is difficult to know which words sound simi
lar, but a good first approximation is that words containing similar phoneme 
sequences are likely to be a source of recognition errors. 

As previously mentioned, as the number of words to be recognized increases it 
becomes increasingly difficult to distinguish between them. Longer words contain 
more phonemes and hence are more likely to contain cues allowing them to be dis
tinguished from other words. For example, the words "impossible" and "improba
ble" contain nearly identical sequences of phonemes, but the fricative "s" is a 
robust cue for differentiation. Errors can be minimized by careful selection of the 
vocabulary set to be used in an application, avoiding short and similar sounding 
words. When using a discrete word recognizer, it is helpful to string together 
short words such as "to the right of" into phrases which are trained and spoken as 
if they were single words. 

But modifying one's vocabulary to optimize recognition performance may not be 
possible or may detract from the advantages of speech input. "Five" and "nine" 
could be confusing words for recognition because of their common vowel, but if the 
application requires the user to enter a telephone or credit card number, the use 
ofthese words cannot be avoided. Although "affirmative" and "negative" are more 
easily distinguished than "yes" and "no," they take longer to pronounce and more 
importantly are not part of most of our daily vocabularies. In situations in which 
speech recognition is essential, users may be amenable to using specialized 
vocabularies; however, this is at cross purposes to the claims of naturalness and 
ease of use for voice input. 

Aroust Eavironment 

Noise interferes with recognition-although some recognizers are more sensitive 
to noise than others. Environmental noise varies widely; there are vast differ



162 VOICE COMMUNICATION WITH COMPUTERS 

ences in the amplitude and spectral characteristics of the acoustical ambiance in 

an office, on a factory floor, or inside an automobile. In a noisy environment, spe

cial noise-canceling microphones may assist recognition (see Figure 8.1). These 

microphones attempt to remove background noise from the speech signal and are 

usually worn on the head or held near the mouth. This position is a hindrance in 

many circumstances. 
Impairments in the acoustic channel may be constant or vary with time; con

stant characteristics are easier to model and hence are easier to compensate for. 

Speech recognition over the telephone provides an example of each. As discussed 

in Chapter 10, a telephone circuit transmits only the portion of the speech spec

trum below approximately 3500 Hertz,3 so a recognizer designed for telephone 

use must not rely on acoustic cues based on frequencies above this. This limited 

bandwidth is a predictable characteristic of the telephone channel. In addition, if 

a call is placed from a public telephone, there may be highly variable background 

noise such as traffic sounds, flight announcements, or the caller at an adjacent 

telephone. Because it is 

pensate for it. 

3A manifestation of limited bandwidth is the increased difficulty we have in identifying 

a person by voice over the telephone. 

Figure 8.1. A noise-canceling microphone. Background noise enters the 

microphone in both the front and rear openings, but the user's speech is 

detected primarily at the nearer opening. This allows the microphone to 

subtract the background noise from the combined input of speech and 

background noise signal. 

difficult to model such noise, it is also difficult to com



163 Jhing Rcogni~o 

TcErs' Gracterss 

Recognition simply works better for some people than others; this is what is 
sometimes referred to as the "sheep-and-goat" problem. Some users, the "sheep," 
can achieve high recognition accuracy. They are more cooperative and adaptive 
with their speech habits or perhaps simply more consistent in how they speak. 
Others, the "goats," have considerable difficulty with recognition. They may expe
rience "microphone fright" or be resentful of the implications of a computer assist
ing them on the job. Many people compensate for errors during recognition by 
speaking louder, which may cause distortion by overloading the audio circuits, or 
by trying to speak more distinctly, which may make their speech less similar to 
the templates that they trained while relaxed. A user with a cold and congested 
nasal passages may need to train a new set of templates to achieve acceptable 
recognition due to the changed spectrum of the vocal tract transfer function. 

INTERACTION TECHNIQUES 

It is impossible to build an effective speech recognition application without tak
ing care to minimize errors if possible and incorporating a means of coping with 
recognition errors. The previous section catalogued factors influencing the error 
rate; some of these may be at least somewhat under control of the application, 
such as utilizing a recognition vocabulary that avoids words that sound similar. 
This section also discusses other activity that can be incorporated into the user 
interface to diminish error probabilities. But errors will happen. This section 
emphasizes interaction techniques that can be employed by the user interface to 
allow applications to utilize recognition despite the errors. 

Because recognition errors may be due to different causes (insertion, rejection, 
and substitution errors were just described) multiple error recovery techniques 
may be needed in a single application. There are two aspects of coping with 
errors. Error detection identifies that an error has occurred. Detection can be 
triggered by the user's apparently requesting an improper or meaningless action 
by the system or by the recognizer's reporting that a rejection error has occurred. 
Errorcorrection techniques can then be employed to rectify the error and allow 
the application to determine what the user actually requested. Recognition errors 
may not be readily detectable by an application. If the user says "Call Barry" but 
the recognizer reports "Call Harry," this semantically correct substitution error 
might easily pass unnoticed, so the application must provide for user-initiated 
error correction as well. 

This section focuses on techniques, largely conversational, for understanding 
the user's spoken input. If an error is detected, what should a user interface do 
about it? If the user detects the error, what corrective action does the application 
provide? This section discusses techniques to minimize recognition errors based 
largely on the observations made above on factors contributing to errors. It then 
examines confirmation strategies whereby the user is informed of what the appli
cation is about to do and has an opportunity to veto any command triggered by 



164 VOICE COMMUNICATION WITH COMPUTERS 

erroneous recognition. The final part of this section presents methods whereby 

either the application or the user may invoke iterative techniques to detect and 

correct recognition errors from input command sequences already in progress. 

MWnIhiH EroW 

Recognition errors result in impaired application performance and increased user 

frustration. Whenever a recognition error occurs, a repair strategy must be 

invoked by either the user or the application. Repair inevitably necessitates the 

user speaking more words, which may in turn be misrecognized in addition to the 

error that the dialogue is meant to correct As the error rate increases, it takes 

correspondingly longer to complete whatever task is supported by the applica

tion, and user satisfaction with speech recognition plummets. Error rates can be 

diminished by compensating for the factors resulting in errors; several factors 

were discussed in the previous section: 

* 	 Careful selection of the recognition vocabulary. 
* 	 Control of environmental acoustics and the use of a head-mounted 

noise-canceling microphone. 
* 	 Training users to speak clearly and consistently. 

Several additional techniques can be used to further minimize recognition 

errors. 

V00a11oWry Subsenfky 

Many recognizers allow the application to specify that only a subset of the full 

vocabulary should be available for recognition at a particular moment. This 

dynamic modification of vocabulary size can result in significant performance 

improvements if the structure of the task permits. Many speech recognition 

applications use speech input much like filling out a multiple choice form; at any 

juncture in the user interaction there are a small number of choices of what to say 

next. For example, if the user is asked to speak a telephone number, recognition 

can be restricted to the digits plus a few key words, such as "area code" and "quit." 

If the application asks a yes-or-no question, the active vocabulary can be reduced 

to just the two possible responses. 

Moel Subse.agLoagwre 

Most current large vocabulary speech recognizers employ language models to 

improve accuracy by specifying all possible input sentences prior to recognition. 

This is similar in concept to vocabulary subsetting where the subsetting is done 

on a word-by-word basis while attempting to recognize a sequence of words. The 

application can facilitate this process by activating and deactivating portions of 

the language model (sometimes called "contexts") during the course of interac

tion. For example, at the stage of a transaction where the user is expected to 



165 singSph~ nognitn 

speak a dollar amount, the recognizer can be told to use only the small portion of 
its language model dealing with dollars, cents, digits, etc. 

Epxdt~ldkfok of Afentin 

In many acoustic environments background noise is highly variable, which 
results in spurious insertion errors when short, loud sounds are picked up by the 
microphone. Insertion errors also occur if the user speaks with another person 
such as a telephone caller or a visitor. Such errors can be minimized by disabling 
recognition when it is not in active use. 

One simple means of disabling recognition is the addition of a mechanical 
switch on the microphone cable. A hand-held device employing speech recognition 
may require a push-to-talk button in a noisy environment. If the user is at a com
puter, a mouse button may be used the same way. But any mechanical switch 
detracts from the benefit of being able to use recognition while one's hands are 
otherwise occupied. 

Another alternative is to use voice commands such as "stop listening" and "pay 
attention." After the user says the first of these commands, recognition results 
are discarded until the second is spoken. Note that it is important to use phrases 
for this software switch that are unlikely to be spuriously recognized themselves. 
Another disadvantage of the stop listening approach is that the user is likely to 
forget that recognition is disabled until speaking several times with no apparent 
results. 

Some versions of CMU's Sphinx recognizer used a key word to indicate atten
tion and trigger recognition: "Computer, when is my meeting?" "Computer, cancel 
the meeting." Recognition control can also be implemented using the keyboard or 
mouse if the user works at a computer console. Finally, it is possible to use the 
direction in which the user speaks as the focus mechanism. The Media Lab's Con
versational Desktop project [Schmandt et al. 1985] used such an approach; the 
user turned toward the screen when he or she wished to be heard, and an array 
of microphones detected this change of attention. 

CaRnniatil Strategies 

The need to cope with the high likelihood of errors must play a lead role in the 
choice of interaction techniques. The interface designer must consider the conse
quences of the application performing an incorrect action on the basis of misun
derstood input and how to improve the chance that the user will notice the error 
before doing further damage. By setting a high rejection threshold, an interface 
designer can decrease the number of misrecognized words but at the cost of an 
increase in rejection errors. The user can be more confident that the application 
will not err, but it will likely take longer to perform the correct action. 

Whether it is faster to reject many possibly correct utterances or accept errors 
and allow the user to correct them depends on the nature of the task, the com
plexity ofthe input, and the time required for recognition. Depending on the prob



166 VOICE COMMUNICATION WITH COMPUTERS 

abilities of making errors with particular vocabulary sets, different correction or 

confirmation techniques can be modeled as Markov processes and their behavior 

predicted [Rudnicky and Hauptmann 1991]. But for some applications an error 

cannot be repaired. This is the case when the computer is going to perform some 

action with dangerous or irrevocable side effects (launching a missile or deleting 

a file). Such performance errors can be avoided by offering the user a chance to 

cancel a misrecognized request before the application has acted on it. At the cost 

of requiring greater participation from the user, several different confirmation 

strategies can be invoked to avoid making a mistake. 

Expld Coawffnte 

When misrecognition would cause an irrevocable performance error, explicit con

firmation may be required from the user, elicited by echoing the request as recog

nized: "Please confirm that you wish to delete the file named 'book'." If the user's 

response is then limited to "yes" or "no," vocabulary subsetting can be employed 

to decrease the chance ofmisrecognition. In addition, the rejection threshold can 

be increased for the reply for added confidence that the user really wishes to pro

ceed with a dangerous action. 
Explicit confirmation is slow and awkward, requiring responses and user feed

back with each interaction. As described here, it offers the user little recourse for 

misrecognition except the opportunity to try again without causing damage. 

Hence, it should be used sparingly. If the consequences of system action and rec

ognizer accuracy together suggest use of explicit confirmation on every user 

request, the task is likely to be ill suited to speech recognition. 

A more flexible variation is to use explicit confirmation only when the user's 

choice is implausible or the recognition score for a word is low. In such circum

stances an effective technique is to ask "Did you say ... ?" and temporarily switch 

to explicit confirmation mode. 

Coned 

An alternative to explicit confirmation is implicit confirmation, in which the 

application tells the user what it is about to do, pauses, and then proceeds to per

form the requested action. The application listens during the pause, thus giving 

the user the opportunity to cancel the request before any action occurs. If the 

request takes significant time to perform, such as dialing a number from a cellu

lar phone, the application may be able to begin performing the task during the 

pause; if the user cancels, the call attempt is abandoned before the call has had 

time to go through. 
Implicit confirmation allows the system to perform more effectively as recogni

tion accuracy improves. The user is required to intervene only in the case of an 

error; otherwise the request and resulting action proceed smoothly. Implicit con

firmation could be slightly slower than explicit confirmation as the application 

must pause long enough to provide ample time for the user to respond. The user 

can be allowed to terminate the pause by saying "OK"; this is similar to the 

Inpldmn, 



167 isngSpeedi Reconioin 

optional termination techniques discussed in Chapter 6. If the user always 
responds, this is identical to explicit termination. Although the application is idle 
during this pause, the user can be performing other tasks and thinking about 
what to do next. Because the application has confirmed what it is about to do, the 
user need not devote additional attention to the task. 

EnCorrntecion 

The previous section described confirmation techniques to ensure that erroneous 
recognition did not occur or was canceled by the user. This was based on a binary 
judgment by the user as to whether recognition was correct; rejection caused the 
entire input to be discarded. While this may be necessary in error-critical situa
tions, a more effective strategy is to attempt to detect recognition errors and 
invoke repair dialogue to resolve misrecognized words, 

An error may be noticed by the application or it may escape detection only to 
be noticed by the user. The application may detect that an error occurred 
because the resulting sentence is syntactically ill formed or semantically mean
ingless; techniques for such analysis are discussed in Chapter 9. Or it may be 
that an apparently well-formed request is meaningless in the current state of 
the application and its associated data. For example, consider a spreadsheet in 
which the rows are numbered and the columns are lettered. "Add row five and 
row B" is a syntactically well-formed sentence in and of itself but does not 
describe an operation that can be performed on this spreadsheet. "Add row five 
and row twelve" could be a valid operation, but if row twelve has not yet had val
ues assigned to it, the operation still cannot be performed. An application sup
ports a more limited set of operations than can be described with the associated 
vocabulary, and the current state of the application further constrains accept
able user input. 

Depending on the class of recognition error (rejection, insertion, or substitu
tion), the application may be faced with an incomplete utterance, a meaningless 
utterance, or a valid request that is unfortunately not what the user asked. Ifthe 
application detects the error, how can it determine what the user wants? If the 
user detects the error, how can the application allow the user to make repairs? 

In addition to identifying which word was detected, some recognizers supply 
additional information that can be used during error recovery. One such piece of 
useful information is the word that is the next best match to the spoken input. 
The similarity scores for each word indicate how reliable that choice is and how 
plausible the second choice is if the first is deemed to be in error. If the first choice 
is not meaningful in a particular context, the second choice may prove to be an 
acceptable alternative. 

Some recognizers are capable of reporting the confusability ofthe words in its 
vocabulary. Confusability is a measure of how similar each word is to every other 
word in the vocabulary and gives an indication of the probability that any other 



168 VOICE COMMUNICAlION WITH COM IUTEIS 

word will be substituted. If the recognized word is inappropriate in the current 

context but another word that is highly similar is appropriate, the application 

could use the alternate instead of the recognized word. 
In the spreadsheet example, the phrase "row B" was suspect. Either second 

choice or confusability information could be used to indicate whether the user 

actually spoke "row three" or "column B," for example. 

Alfnawte lq Modffdies 

In addition to speech, other input channels may be used to point or select the data 

represented by an application. Hauptman found that users were able to make 

effective use of pointing in combination with limited vocabulary speech recogniz

ers to describe graphical manipulations [Hauptmann 19891. Pointing devices 

may be two dimensional (mouse, stylus, touch screen, joystick) or three dimen

sional (gesture input using a variety of magnetic or ultrasonic techniques). Eye 

trackers report the angle of the user's gaze and can be used to manipulate an 

object by looking at it [Jacob 1991]. 
The selection gesture may be redundant to some words in a spoken command; 

this is especially true of deictic pronouns ("this," "that," "these," "those"). If the 

gesture can be correctly synchronized with the reporting of speech recognition 

results, the gestures can be used in place of any pronouns not recognized. This 

technique was first used in Put That There, a project described later in this chap

ter. Carnegie-Mellon University's Office Manager (OM) system used mouse-based 

pointing as a means of explicit error recovery [Rudnicky et al. 1991]; after recog

nition, a text display of the user's request was presented, and the user could click 

with the mouse on a word to be changed. Voice has been combined with gesture in 

a three-dimensional model building task [Weimer and Ganapathy 1992, Weimer 

and Ganapathy 19891. Starker and Bolt combined speech synthesis and eye track

ing into a system that discussed what a user was looking at [Starker and Bolt 

19901; and more recently the same research group has incorporated speech recog

nition as well [Koons et al. 1993]. 

Dig WIthk Usr 

The errors that an application detects result in a meaningless or incomplete 

request. The application must then employ techniques to elicit additional infor

mation from the user. The simplest but not very effective technique is to ask the 

user to repeat the request. If the user repeats the request word for word, it is 

quite possible that the same recognition error will occur again. If the user instead 

rephrases the request, different recognition errors may occur, and it is challeng

ing to merge the two requests to decide what the user really wanted. 

It is better for the application to ask the user one or more specific questions to 

resolve any input ambiguity. The phrasing of the questions is critical as the form 

in which a question is asked strongly influences the manner in which it is 

answered. The goal of efficiency suggests that the questions be brief and very 

direct. The goal of minimizing user frustration would also suggest asking ques



169 U0Speh6 Rmgnii 


tions that can easily be answered by a single word because words spoken in iso
lation are more easily recognized than connected speech. Consider a schedule 
application as an example. The user requests "Schedule a meeting with Rebecca 
tomorrow at three o'clock"; however, the word "three" is rejected. Because the 
application requires that a time be specified to complete a schedule request, the 
error can be detected. In return, the application could ask "At what time?" 

Ed1f 

Asking a terse question is fast but conveys little information about the words that 
the application assumes to be correct. In the above example, if the application 
responded "What city?" the user would realize the application had probably com
pletely misunderstood. But if instead of "Rebecca" the speech recognizer had 
detected "Erica," the query "At what time?" could not convey the occurrence of 
this error to the user. 

Echoing is a technique to offer extensive feedback to the user. For example, the 
application might have asked "At what time do you wish to meet with Erica 
tomorrow?" so an alert user could notice the error. Even when the application 
receives an apparently correct command sequence, echoing it to the user provides 
an opportunity for the user to take further action. The major drawback of echoing 
is that it takes time and makes the application much more verbose. 

When recognition errors result in a well-formed and plausible command, an 
application cannot detect the error and will perform the wrong action in the 
absence of a confirmation strategy. The user may recover from such an error by 
backtracking, in which the user simply cancels a request or asks the application 
to "undo" the action. This is appropriate only when the command can, in fact, be 
canceled with little or no penalty. To implement backtracking, the application 
must remember its state before each round of user input; the complexity of this 
memory is task dependent. Backtracking is a corrective behavior invoked entirely 
by the user but assisted by the application's ability to track its state. 

CASE STUDIES 

What do these factors lead us to conclude as to the suitability of speech recogni
tion to real world work situations? Speech is fast and can be effective for text 
entry provided the recognizer performs adequately. Performance is enhanced by 
constraining the recognition choices at each word boundary, i.e., by minimizing 
the perplexity of the recognition task. This implies that recognition for free-form 
dictation is more difficult than for application-specific tasks. 

Recognition is often suitable for tasks in which one's hands and eyes are busy, 
providing a valuable auxiliary channel for tasks such as computer-aided design. 
But note that recognition in this context is more suited to selection of one of a 



170 VOICE COMMUNICATION WITH COMPUTERS 

small number of items from a list (e.g., a menu) or selecting an object from some 

number on display than for continuous tasks such as positioning a cursor. 

Recognition is particularly difficult in noisy situations, such as in an automo

bile or on a factory floor; under these circumstances users may be forced to wear 

head-mounted microphones. Recognition may be possible in a relatively quiet 

office environment, but privacy concerns and social conventions make it unlikely 

we will talk to our computers if we share our office. 
This chapter has discussed both the characteristics of applications that may 

make them successful candidates for speech recognition as well as interactive 

techniques required to allow users to cope with recognition errors. This section 

considers two case studies to illustrate these themes. The first case study exam

ines Xspeak, which used rudimentary isolated word recognition to manage win

dows on a workstation display. Xspeak illustrated how commercially-available 

recognition may already perform adequately for deployment into normal office 

environments4 and discusses experiences of real users incorporating recognition 

into their jobs. 
The second case study, Put That There, demonstrates an early application of 

multiple error management techniques. Put That There employed connected 

speech recognition, and the nature ofthe application required very different error 

management than Xspeak. Put That There was one of the first speech user inter

faces to merge both recognition and synthesis into a conversational system. 

Xsp.k: Window Mmongement by Voke 

This chapter has contrasted the large vocabulary listening typewriter with 

smaller vocabulary application-specific recognition. But few workstation-based 

applications use recognition, and the discussion of error handling techniques 

should make it clear that incorporating recognition into an application requires 

considerably more programming than simply reading from an additional device 

for input in addition to the mouse and keyboard. Furthermore, most desktop com

puters are now running window systems, allowing users to employ multiple 

applications during the same work session. If several applications use speech 

recognition, will they compete for the microphone? Recognition results must be 

distributed to the correct application process using some indication of the user's 

intention, such as knowledge about the vocabulary employed by each application, 

or which window is currently active. 
Window systems are ubiquitous on computer workstations. The window system 

divides the screen into multiple regions ("windows"), each of which can be devoted 

to a single application. An operating system may allow multiple programs to exe

cute simultaneously; the window system allows each of them to display output 

without disturbing the others. A typical workstation user is likely to run many 

4Since this project was completed, a number of products to control windows by voice have 

appeared on the market. 



UngSp.6d R•ogilo Ill 

applications as a matter of course, each utilizing one or more windows (see Figure 
8.2). These might include a clock, calendar, mail reader, text editor, and perhaps 
a debugger with a graphical user interface. 

The window system may allow windows to overlap or may tile them such that 
all are visible simultaneously. Overlapped windows are currently more popular; 
the added load on the user to keep track of partially "buried" windows allows 
more applications to make effective use of the screen simultaneously [Bly and 
Rosenberg 1986]. A window manager controls which window receives keyboard 

input or focus. A real-estate-driven window manager assigns input to the win
dow on which the mouse cursor appears; click to focus requires the user to click 

a mouse button on a window to shift the focus there. The mouse is also used to 
hide and expose windows and to specify their size and location. A third use of the 

mouse is user input for applications supporting direct manipulation interfaces 
with buttons, scroll bars, sliders, and toggle switches. 

Xspeak was a Media Lab project that explored an alternative use for voice in 

the multiple-application workstation environment [Schmandt, Ackerman, and 
Hindus 1990]. Instead of focusing on the applications themselves and rewriting 

them to support speech recognition, Xspeak instead used voice input to supple

ment the mouse for switching among applications under X windows. Xspeak 

provided an extension to window systems by matching limited recognition capa

bilities to a well-defined set of window operations. Xspeak is an example of an 

application for which small vocabulary speaker-dependent isolated word recogni

tion is adequate. Although Xspeak was implemented using external recognition 

o - -


-- -*

n16rn a 

.3-a,--.,
.- -'-I, 

- , -in-1: 

t:Rt. ~i~) 
-I-

-s ~-~ 
n .InI f-m-i-.. i 

- - WI' 2 U·U-.t-.-

2- · j. nIs 
 ~Mi~p 
2 ~I- S Ai2 l.h9l.i 

' 'u"e 
- ie' IAii-fl - -
I fi' I t- -fl -lA -w 

I "l, I - *M fl
I 

Figure 8.2. Many windows may be displayed simultaneously on a single 

screen.




172 VOICE (OMMURICAION WITH COMPUTERS 

hardware, suitable software-based recognition requiring no additional hardware 

is already becoming commercially available.' 

Xspak Fondi..#ty 

Xspeak provided for the use of voice for the first two mouse functions previously 

mentioned: focus management and navigation among windows that may be 

obscured by other windows. Xspeak worked with real-estate-driven window man

agers supporting overlapped windows. Each window had a name; speaking its 

name exposed the window. Xspeak then moved the cursor into the window so the 
movewindow manager assigned it the keyboard focus. Thus the user could 

among applications sending keystrokes to each in turn without removing his or 

her hands from the keyboard. Additional commands allowed the user to raise or 

lower the window in which the cursor currently appeared. 

Xspeak employed a small window to provide both textual feedback to the user 

and recognition control capabilities (see Figure 8.3). As each word was recog

nized, it was displayed in this window. In ordinary use this window was ignored 

as the window reconfiguration provided adequate feedback, but the display panel 

was useful when recognition results were particularly poor and the user needed 

to confirm operation of the recognizer. Through the control panel the user could 

name a new window; this involved clicking on the window and speaking a name 

that was then trained into a recognition template. The control panel also pro

vided a software "switch" to temporarily disable recognition when the user 

wished to speak with a visitor or on the telephone. Another button brought up a 

configuration window, which allowed the user to retrain the recognizer's vocabu

lary, configure the audio gain of the speech recognizer, and transfer the recogni

tion templates to disk. 
Xspeak was an application not a window manager (see Figure 8.4). It worked 

by capturing recognition results and sending X protocol requests to the server. As 

with any client application, these requests could be redirected through the win

dow manager, and the window manager received notification of the changes in 

window configuration or cursor location. Because Xspeak did not replace the win

dow manager, it could be used across a wide range of workstation window system 

environments. 

Why Speech? 

Xspeak was motivated by the belief that window system navigation is a task suit

able to voice and well matched to the capabilities of current speech input devices. 

Using speech recognition to replace the workstation keyboard would be very dif

ficult; it would require large vocabulary speech recognition devices capable of 

dealing with the syntaxes of both English text as well as program text and oper-

SXspeak has recently been revived using all-software recognition. This greatly facilitates 

deployment of the application. 



Using 173Speah RecoWnin 

Figure 8.3. Xspeak control panel. 

Usermouse and 
keyboard Wp 

Sp•ch ecogntlon - X-peak 
sewerv 

Applicatlan 
(e.g., Emacs) 

Application 

(e.g., Xtenrm) 

Figure 8.4. Xspeak cooperated with other processes under X windows. 

ating system commands. In contrast, a typical user employs a relatively small 
number of windows, and because the user need speak only the name of the win
dow, isolated word speech recognition suffices for the task. Using speech recogni
tion to replace the mouse takes advantage of the fact that the user's hands and 
eyes are busy on the keyboard and screen. Using voice input saves the trouble of 
finding the mouse manually, performing an action, and then repositioning the 
hand on the keyboard. 



174 VOICE COMMUNICATION WITH COMPUTERS 

Voice input also overcomes the dimension mismatch between windows and the 

mouse. The mouse is a two-dimensional input device, but windows are two-and

a-half dimensional; windows are planar but the plane of any window can be in 

front of or behind the planes of other windows. Once a window gets buried, the 
mouse must be used to move other windows out of the way until some part of the 

buried window is exposed, so mouse actions increase with the number of win

dows. But speech input bypasses the dimension problem and exposing windows is 

no more (or less) difficult than recalling an element from a list of names. 
Finally, it was hypothesized that the divided attention theories previously 

mentioned would support improved performance by allocating multiple input 

channels to the task of working under a window system. T'b the extent that navi

gation and focus management are distinct tasks from the operations being per

formed inside the selected windows, dividing these tasks across modalities should 

enhance user performance. 

Xspak to Usn 

A small number of student programmers used Xspeak during their normal work

day for several months and were observed by interviewing, videotaping, and log

ging ofwindow system events [Schmandt et al. 1990]. These observations support 

the hypotheses about the utility of voice in this task only weakly, yet clarify some 

of the difficulties of speech recognition. 
The dominant factor in user interactions and acceptance of Xspeak was errors. 

Even in this simple task, recognition rates were abysmal (often less than 80% cor

rect), in large part due to the microphones selected. Because it seemed doubtful 

that programmers (or the real users toward whom an interface such as Xspeak 

would eventually be targeted) would wear head-mounted microphones, high qual

ity directional microphones were positioned on stands next to the computer mon

itors. These microphones admitted much nonspeech noise, and the recognizer 

responded with a propensity for insertion errors due to sounds such as the key

board, doors closing, and conversations in the hall. An insertion error would 

result in the user's keystrokes going into the wrong window; unless noticed 

immediately this could cause serious damage. T' eliminate insertion errors, rejec

tion thresholds were set rather high, resulting in the tendency towards rejection 

errors reflected in the recorded error rates. 
Despite these errors, several users expressed a preference for the recognition-

equipped workstations. Those realizing the most advantages from Xspeak were 

the very active users who kept themselves busy with tasks running in many win

dows. One such user had already developed techniques using an "icon manager" 

to control windows and found no added value to speech input. One user employed 

very few windows and spent much of his time at the workstation during this 

study thinking and never made much use of recognition. All users abandoned the 

'An icon manager displays a control panel listing the names ofall windows. The user can 
make windows appear and disappear by clicking on this icon manager menu. 



175 U~ngSpch Rqognir 


microphone-equipped consoles when significantly faster workstations became 
available elsewhere in the laboratory. Nonetheless, a majority of the users were 
able to use Xspeak effectively and incorporated it into their daily work routines. 
Some were extremely enthusiastic and competed for access to Xspeak. 

Users did make frequent use of the control panel to test the recognizer and 
retrain words when recognition was especially poor. Users needed help selecting 
a vocabulary set appropriate for recognition; one user tried to train nonspeech 
sounds such as a sigh and a hiss as window names with no success. Summarizing 
the observed usage and opinions garnered from interviews, Xspeak was certainly 
intriguing and was perceived positively despite the high error rates, but it simply 
did not work reliably enough to change work habits. Most users thought that 
Xspeak was much faster than using a mouse (when recognition succeeded), 
despite measurements showing that for the most common very simple window 
actions (switch focus between two exposed windows) the mouse was actually 
somewhat faster. 

The last observation might lend some credence to the divided attention theory, 
as performance would have to be measured by software production quantity or 
quality and the perceived speed of recognition might indicate that it interfered 
less with the programmers' cognitive processes. But the users' strongest com
plaint (after poor recognition accuracy) was that they wanted to use speech to 
interact with applications, not just select between them. The clean division of 
mouse functionality presented above did not dominate the users' perceptions, 
which suggests that using recognition for window management is just one aspect 
of multimodal input at the workstation. Although an interaction language to 
integrate speech recognition into application commands by simulating X input 
events and distributing them to application windows was designed, it was not 
implemented. 

Put ThtThml 

An early example of an application employing several of the techniques described 
in this chapter was Put That There, done at an MIT Media Lab predecessor, the 
Architecture Machine Group, in 1980 [Schmandt and Hulteen 1982, Bolt 1980]. 
Put That There was an exploration into the use of multimodal input and conver
sational techniques to resolve recognition errors. While using this application, 
the user sat in front of a large-screen video projector and used voice and gesture 
to manipulate ships on a display of a map. Gesture was tracked via a magnetic 
six-degree-of-freedom sensor worn on the user's hand. The application responded 
with visual as well as aural feedback using synthesized or digitized speech. 

Put That There was a command-and-control application that, depending on the 
selected database, let the user either create, move, modify, name, or destroy a 
fleet of ships in the Carribean or build towns, forts, and churches around colonial 
Boston. The work described here was based on an earlier prototype allowing for 
manipulation of abstract shapes on a blank screen. Although the prototype pre
sented an impressive demonstration of the technology, the lack of voice response 
made for an interface only marginally usable: If a single word of an utterance was 



176 VOICE COMMUNICATION WITH COMPUTERS 

not recognized, the mute application offered no feedback, and the user's only 

recourse was to repeat the utterance until something was recognized. 
Speech was the primary input to Put That There, via a connected-speech rec

ognizer with a vocabulary size of about a hundred words. The version described 

here accepted such utterances as these. 

* 	 Create a large red sailboat north of Haiti. 
* 	 Delete the cruise ship. 
* 	 Move the yellow oil tanker east of the Bahamas. 
* 	 Copy that (pointing to a ship) ... north of that (pointing to another 

ship or a feature on the map). 
* 	 Where is Havana? 
* 	 Move the yellow oil tanker south of the large green sailboat. 

The application's main input loop waited for recognition results while tracking 

the hand and recording gestures as they were detected. When speech was recog

nized, the first stage of the application's parser analyzed the input word by word. 

Each word was classified as an instance of a small class of semantic types from a 

grammar very specific to this application. Examples of these classes include the 

following. 

* 	 Command: the requested action. 
* 	 Movable-object: a type of ship, e.g. freighter, oil tanker. 
* 	 Color 
* 	 Size. 
* 	 Destination:either a map location or another ship. 
* 	 Destination-relative:prepositional phrases such as "north of" or 

"below." 

The parser generated a frame, i.e., a data structure describing a request in 

progress, which contained slots for the various semantic classes filled in with 

the specific instances of the words heard. The input loop then dispatched to 

command-specific procedures for semantic analysis. These procedures were hard-

coded program segments that analyzed the frame to determine whether it ade

quately specified the requested action; for example, a "move" command requires 

an object to be acted upon as well as a destination. At this point, pronouns such 

as "that"or "there" were associated with screen coordinates by mapping gestures 

to objects identified by the bounding boxes of the various targets on the screen. 

Even if the pronoun were missing due to a rejection error, a recent gesture could 

satisfy the target specification requirement if it uniquely identified an object or 

position. 
Database routines were invoked to associate descriptions with objects. If the 

user spoke "the red freighter" and this uniquely matched a ship, parsing could 

continue. If no ships matched the description, Put That There would ask "Which 

object?" In the case of multiple matches it would ask "Which one?" These terse 

responses were barely adequate for guiding the user to an unambiguous request; 

they would have benefitted from echoing or other explanatory behavior to help 

understand the nature of the misrecognition. 



177 Using Speed Reogniion 

If an utterance was complete, then these command-specific analysis routines 

invoked action routines to update the ship database and modify the display 

accordingly. Most often, however, one or more words would have been misrecog

nized, resulting in an apparently incomplete request. Each semantic analysis 

routine included code to generate a query to the user; these queries were designed 

to elicit single-word responses because the recognizer exhibited much better per

formance on isolated word input. The queries such as "Where?", "Which one?", 

and "Relative to what?" were spoken to the user by a primitive speech synthe

sizer. Since there was a limited set of queries, the synthesizer was later replaced 

with higher quality digitized speech stored on magnetic disk. 
Parsing and semantic analysis were re-entrant; after a query was spoken to 

the user, additional input was gathered from the main input loop and inserted 

into the utterance frame exactly as before. Since the frame was not initialized 

after the query, any new information was merged with the old and the semantic 

analysis routines could then examine the frame again. This query-response

parse cycle continued until an action could be executed or the user reinitialized 

the process by saying "restart." The net effect was that as recognition accuracy 

deteriorated, more time and user interaction were required to complete a request 

but breakdown was rarely catastrophic. 
Several error correction strategies were available to the user if misrecognition 

resulted in a semantically meaningful sentence and a corresponding erroneous 

action. Put That There maintained a short history of location and attributes for 

each ship, allowing the user to invoke the undo command. If a ship was created 

with the wrong attributes such as being green instead of the requested yellow, the 

change command allowed for repairs without the need to start the transaction 

over, e.g., "Change that to yellow." 
Another feature of Put That There was dynamic vocabulary management. The 

name command allowed the user to name a ship and thenceforth refer to that ship 

by name. Naming was accomplished by putting the recognizer into a selective 

training mode to create a new template when the user spoke the name and asso

ciating this template with the ship in the object database. Dynamic training was 

facilitated by the fact that the recognizer built vocabulary templates from a sin

gle training pass; otherwise, the user might have been required to speak the 

name several times. 
The speaker-dependent aspect of the speech recognizer was used to advantage 

when a multi-user version of the application was desired. The outputs of two 

microphones were mixed, the vocabulary size was trimmed to occupy only half of 

the available template memory, and each user trained his own version of each 

word. As long as the two operators did not speak simultaneously, recognition pro

ceeded as normal. Since the application knew which user had created an object, 

this information was added to the database to prevent unauthorized modification 

of one user's ships by the other user. 
Put That There is noteworthy as one of the earliest user interfaces employing 

either multimodal input or conversational techniques using voice input and out

put. Although the application itself was only marginally relevant to real com

mand and control systems, the user interaction techniques are applicable to a 



178 VOICE COMMUNICATION WITH COMPUTERS 

variety of voice interfaces. Subsequent projects, most notably Conversational 
Desktop (described in Chapter 12), focused on the parsing and error management 

techniques initiated with Put That There. 

SUMMARY 

This chapter discussed incorporating speech recognition into interactive applica

tions. There are many approaches to recognition, and different classes of speech 

recognizers are amenable to varying styles of applications. Recognition may be 
employed when no other input channel is available, as an adjunct to existing 

input channels (keyboard and mouse), or as a direct substitute for the keyboard 

for text entry. Each of these application areas has different recognition require

ments and derives unique benefits from the use of voice input. 
Poor recognition accuracy is the dominant concern in designing interaction 

techniques to employ speech input. Insertion, rejection, and substitution errors 

all degrade performance but in different ways. Errors can be minimized by care

ful choice of vocabulary and microphone placement and by chosing cooperative 

subjects, but these factors may not apply to real-world deployment of recognition 

technology. As recognition accuracy improves, errors inevitably occur and can be 

managed through user participation in a variety of confirmation and repair 

strategies; however, it must be stressed that some interaction techniques will 

always be required to ensure accurate communication. This chapter discussed 

the use of language and task constraints in the automatic detection of recognition 

errors; we will return to the topics of language understanding and dialogue struc

ture in Chapter 9. 
This chapter's discussion of error recovery implies that developing recognition-

based applications is much more demanding than simply adding a new input 

device to existing applications. Xspeak was offered as an example of a meta-appli
cation, controlling the window system, and thereby selecting an application to 

receive keyboard events rather than modifying the applications themselves. Put 

That There was described as an example of simple parsing techniques and spo

ken dialogue with the user to resolve ambiguities. Although Xspeak illustrates an 

attempt to closely match the specific assets of speech recognition to the range of 
tasks performed at the workstation, the experience of its users also demonstrate 

the frustrations associated with using recognition in daily work. 


