
MIT OpenCourseWare
http://ocw.mit.edu

MAS.632 Speech Interfaces and Mobile Devices
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

4

Applications and Editing of Stored Voice

The previous chapter described some of the basic techniques for digitizing and

encoding speech for either transmission or storage but said little of its role as a

computer data type. This chapter focuses on computer applications of stored

speech with particular emphasis on the underlying system support they require,

especially sound storage facilities and editing. First, a taxonomy of voice appli

cations is described based on the usage characteristics of situations in which

speech is digitized and played back. Next, one of these classes-speech in docu

ments-is explored in some detail. Finally, this chapter presents underlying

representations and a number of examples of speech editors, which are required

to support sophisticated use of audio in documents. In the course of this discus

sion, many examples of research projects utilizing digitized speech are men

tioned to illustrate the range of approaches that have been taken to applications

of stored voice.
This chapter focuses on application areas, their associated system require

ments, and the functionality they require for supporting voice digitization and

playback. Discussion of many user interaction requirements and techniques is

postponed until Chapter 6, which deals with user interface issues for interactive

speech response systems that employ both digitized and synthesized speech.

For the purposes of this chapter, it is assumed that each application runs in

isolation; Chapter 12 discusses issues of voice as a data type, including visual

representations and sharing of voice data among applications on a computer

workstation.

Apkicmla EdilinrSted YVon 	 61

TAXONOMY OF VOICE OUTPUT APPLICATIONS

Stored voice is essential to a variety of applications such as these.

* 	 Toys that play a small number of messages from read only memory.
* 	 Dictation, in which voice is recorded for later transcription into text

by another person.
* 	 Voice mail, in which a message is recorded informally by a caller and

is accessed once by the recipient over a telephone-based interface.
* 	 Voice annotation of text or multimedia documents, which involve

more careful authoring and often a visual user interface.

This section characterizes such applications according to the functionality that
stored voice requires as differentiated by how users employ it in these classes of
applications. Applications may emphasize either recording or playback, and the
stored voice may be heard once or repeatedly. How the stored voice is to be used
in a particular application determines the underlying system support required
for both recording and playback as well as influences the choice of a particular
speech coding technology and how it is stored as computer files.

Plyhkllk-Oly App&.ifns

Stored voice can be employed in a variety of applications for which a small reper
toire of utterances needs to be spoken. Depending on the application, varying
degrees of speech quality may be acceptable. Applications at the low-end of voice
output technology employ single integrated circuits for both the storage and
decoding of the digitized speech. Examples ofthis simple technology are inexpen
sive consumer products such as talking toys (dolls, stuffed animals, etc.) and
video games. Some answering machines use stored speech to record the time onto
the answering machine tape at the end of each incoming message. Answering
machines that store the caller's message digitally are also appearing as consumer
products. Voice warnings are used in both commercial and military aircraft cock
pits. Automobile manufacturers have used digitized speech for warnings, and
some cash registers recite each item and its price; however, neither of these two
applications has proven to be very popular.

In 	situations where only minimal quality speech output is needed, it may be
economical to use an asymmetric combination of speech coder and decoder. It is
practical to use a computationally intensive coding algorithm, such as LPC, if the
decoder is simple and inexpensive. Only the decoder needs to be included in a
product which supports playback only.

Higher quality speech is needed for recorded public announcements such as
the recitation of station names on automated trains or periodic, repetitious
announcements over airport public address systems (e.g., warnings about taking
baggage carts down the escalator). Because it is important for the listener to
understand the message, these applications demand higher quality speech. In

62 VOICE COMMUNICATION WITH COMPUTERS

Japan such announcements are ubiquitous in public locations and are usually

spoken in a stylized female voice.
A similar class of applications are the so-called audio-tex, or interactive

voice response (IVR)telephone-based information services. To use such ser

vices, one dials a telephone number and selects topics with touch tones. Recorded

speech is used both for the information to be played back after selection as well as

for prompts and menus. Examples include services to hear a weather forecast for

a particular city, to find out one's current bank account balance, and to access an

airline's flight schedule. The stored voice for these applications needs to be of ade

quate quality to be easily understood over the telephone by infrequent users.

Because the service is accessed over the telephone, the sound data is most conve

niently stored digitally on magnetic disk at a single site. Interaction techniques

for interactive voice response systems will be discussed in detail in Chapter 6.

For all the applications just mentioned, the stored speech is used as "read only"

data as the purpose of the application is to play a fixed set of prerecorded sounds.

There is no user interaction with the voice itself; the system simply plays it at the

appropriate time in response to the user's input. There is no need for a speech edit

ing capability or a visual representation of the recording on a display, and the

speech may be stored in whatever format is most convenient for the output device.

The developers of such applications occasionally need to update the voice

recordings, and may use an editor or speech development system to do so. This

development system does not need to be distributed with the application since

updating can be done at a single, central location on an infrequent basis and dis

tributed in ROM (Read Only Memory), floppy disks, or digital tape. Even for the

developers, however, "editing" often consists of simply rerecording the passage

repeatedly until the desired diction is achieved.
Some applications make use of a limited repertoire of "canned" speech seg

ments to compose sentences; this involves concatenating short segments of digi

tized sound. One example is the mechanized playback oftelephone numbers from

directory assistance. It is essential that the individual sounds be accessible

quickly enough during playback to avoid a pause between segments. If the speech

is stored in semiconductor memory, this is not an issue, but for slower media,

access time may be problematic.
In most of these applications, voice is chosen because it is the best output

medium available. Because voice broadcasts through the air, it can be used in sit

uations where displays would notbe appropriate or visible. It is chosen as a warn

ing channel because it is effective when the user is doing something else with his

eyes, such as watching where he is driving or flying. In the case ofthe telephone-

based services, access is also a dominant issue; users of such services take advan

tage of the nearly universal availability of the telephone. These advantages will

be discussed in more detail in Chapter 6.

Iteraive Recud and PlayibkAppl iaes

Voice mail is currently the most pervasive example of the class of application that

involves frequent recording and playback of speech segments. Each time a call is

63 AIplka on d EN, g f St dvoe

received, a new message is recorded. Usually the recipient listens to the message
only once but may replay parts of the message while transcribing information
such as the caller's telephone number. Although voice mail systems are most
often treated simply as elaborate answering machines (with which messages are
recorded once and played once), they are functionally more powerful than the con
sumer products found in homes. For example, voice mail systems can be used
within an organization to disperse voice memos to distribution lists specifying
multiple recipients or to specify a future delivery date for a message. This verbal
memo is recorded just like a telephone message, although the author may speak
more carefully or rerecord the message several times because it will be heard by
a wider audience.

Voice is slow and serial, and telephone-based voice mail interfaces do not offer
the user the opportunity to save messages in a "folder" with a mnemonic name as
do most electronic mail systems. Archiving old voice messages and recalling them
later is tedious, and few users take advantage of such capability; consequently,
recording and playback occur equally often, which eliminates the advantages of an
asymmetrical encoder/decoder combination. Random access ofthe recorded speech
file is necessary as well to support repeated listening to a portion of the message.

Because of the more casual nature of telephone-based voice messages over
paper memoranda, editing capabilities need not be provided; it would be difficult
to build an effective editor using an audio-only interface based on touch tones.
Instead, the user may be offered the option of reviewing a message before send
ing it and perhaps may choose to rerecord it. This is in contrast to the system
recordings provided by the voice mail vendor, which are recorded very carefully
often, with the assistance of voice editing software.

During recording, Automatic Gain Control (AGC) may be employed in an
attempt to record constant amplitude messages from variable quality telephone
connections. AGC uses variable amplification during recording to normalize the
level of the recorded signal independent of the source level but it has limitations.
Boosting the gain for a quiet speaker in a noisy environment may not enhance
intelligibility as both the signal and noise are amplified; a better strategy is to
monitor recording levels and prompt the quiet talker to speak louder. Another
problem with AGC is that it tends to increase the gain during quiet portions of
the message, or pauses, which causes a "whoosh" as the background noise
increases; this is evident on many home videotapes. AGC can be improved by nor
malizing the gain based on peaks in the speech signal averaging over a time
period, but this technique is not in widespread use. Although each telephone call
can have a different audio level, the level is usually consistent for the duration of
a message. This allows gain to be applied after the recording by multiplying each
sample by the same scale factor; this avoids the whoosh produced when the gain
is varied during a recording.

Dictation

Dictation is an application of stored voice in which recording capability is
required by the user, but the stored voice is never meant to be heard by the ulti

64 VOICE COMMUNICATION WITH COMPUTERS

mate recipient. Instead, a transcriptionist listens to the recorded voice and tran

scribes it into text, often as a letter, memo, or short report.

Dictation has a different set ofinteraction requirements than other voice appli

cations. The originator of a dictation spends a significant amount of time think

ing about content and so requires a start/stop control or push-to-talk button; this

is somewhat in contrast to telephone messages, where the caller must speak all

at once at the "beep." The transcriptionist uses a foot pedal to control playback.

Transcribing requires the capability to repeatedly review a portion of the mes

sage to understand individual words, but minimal random access to jump or scan

through large portions of the recorded voice. The ultimate recipient of the mes

sage reads the transcription, having no interaction with the stored voice.

Although dictation and transcription have traditionally been done using ana

log tape recorders, other methods are now available. Dictation in an office envi

ronment can be digitized with the transcriptionist using a computer to control

playback (again using a foot pedal). Dictation can also be taken over the tele

phone. Although some companies market this as a special product, business

travelers already frequently leave lengthy voice mail messages for their secre

taries to transcribe.
Dictation is used to create text documents when users refuse to use keyboards

or can afford the cost oftranscription as offset by the faster speed of speaking over

typing or writing. Digitized dictation can also be used as a temporary information

storage medium while awaiting transcription. For example, a hospital's medical

records system could apply such a hybrid systemn Physicians usually dictate their

reports, but hospital administrators as well as medical staff prefer medical

records to be stored in computers for both easy access and archival storage. Once

dictation tapes are transcribed the text is easily stored on line, but until then the

information is inaccessible. If the dictation were stored as digital sound files, it

could be accessed immediately from a voice-and-text workstation, even as tran

scriptionists slowly converted the sound files to text. But for the hospital staff

accessing voice in the medical record before transcription, a user interface differ

ent from the transcriptionists' foot pedal is required; voice as a document type

requires a greater degree of interactivity.

Vuie as aDumnuntType

The use of voice for announcements or in toys does not require any recording

capability after the announcement has been created, while both voice messages

and dictation are intended to be heard only a few times before being discarded. In

contrast, voice can also be utilized as a medium for the creation of documents
awhich are intended to be more permanent or to reach a larger audience. As

document type, voice may be used as a means of annotating text or it may itself

be the primary medium. Voice documents may also include other media such as

text and images. More care will be taken during recording voice documents as

the stored speech is intended for more formal use than a telephone message. In

many cases multiple listeners will hear the recording, especially if it is part of a

presentation.

AplicauinsndEdanStored Voiceig oF 65

Computer workstation-based multimedia applications such as these have
several additional requirements for stored voice not encountered in the classes
of applications discussed thus far. The first requirement is a visual representa
tion of the stored speech appearing in a document and a graphical user inter
face to control playback. Because of the longevity and larger audience for voice
documents, more care is taken in their creation so the second requirement is a
voice editor that provides a means to manipulate stored voice, including cut
ting, pasting, and recording new material for insertion. Editing has implica
tions for sound file storage since it is likely to produce many small snippets of
sound that result in fragmented files, and certain methods of file storage are
more compatible with the internal data structures used by the editor to manip
ulate sound data.

VOICE ININTERACTIVE DOCUMENTS

The remainder of this chapter will focus on uses of stored speech as a document
type. As mentioned above, voice may be used alone or composed with other media
to form a document. This chapter focuses on composed multimedia documents
employing a display and a graphical user interface. Chapter 6 treats the prob
lems unique to audio-only documents accessed without any display. A voice editor
is also usually provided to aid authoring of voice documents. Although voice may
be imported into one application from another much as text is cut and pasted
between windows, discussion of this capability is postponed to Chapter 12; here
we consider only document creation and retrieval.

When both text and voice are available, the different media may be used for dif
ferent types of messages. Voice is appropriate for casual and transient messages,
while text is preferred for messages that the recipient will likely save as refer
ence. Voice is also desirable for its expressiveness; voice can carry subtle mes
sages far more easily than text. It is also faster to enter messages by voice.
Nicholson reported the results of a usage study of a voice and text message sys
tem in [Nicholson 19851 that supports all these observations. Chalfonte et al.
[Chalfonte et al. 19911 compared voice and text as a means ofcommenting on text
for a collaborative writing task; they found that a greater proportion of voice
annotations carried "deeper" comments on style and structure, while text mark
ings related to surface features such as choice of words and syntax.

Voice may be used to annotate text documents; it overcomes some limitations of
the two-dimensional page by allowing comments to be placed anywhere with a
content-associated visual icon that requires less space than handwriting. Con
versely, text may be used to comment on a voice recording such as appending text
remarks to a voice mail message before forwarding it to another party. Applica
tions to support voice and text require the creation and storage of voice and a user
interface to access it while viewing a document.

The Diamond project at BBN (Bolt, Beranek, and Newman) [Thomas et al.
1985] was an early example of incorporating voice with text. Diamond was
designed to support voice and graphics in both electronic mail and more formal

66 VOICE COMMUNICATION WITH COMPUTERS

documents. Nearly 10 years old, Diamond used LPC speech coding to minimize

audio storage requirements. But the LPC coder was an external computer periph

eral that was not readily available. This, combined with the low quality of LPC,

limited the use of Diamond and it remained basically a prototype system. But

many aspects of Diamond have reappeared in Slate, a multimedia mail system

currently available as a product from BBN [Crowley 1991, Lison and Crowley

1989].
Slate documents can include a variety of media and Slate is designed to work

in concert with a computer conferencing system, MMConf. Slate uses a commer

cially available speech coding card or the audio capabilities of the workstation
(bitmaps), itself. In addition to speech, Slate incorporates still images geometric

graphics (lines, curves, etc.), motion video, spreadsheets, and charts. Slate indi
icon that can include a cates the presence of voice in a document with a small

line of text as shown in Figure 4.1. By default, the text contains the author's

name and recording information, but the author can change the label. The

reader clicks on the icon to play the associated stored voice. Slate supports a

small voice editor to allow the author to modify a recording during its creation as

shown in Figure 4.2.
documents Another example of voice annotation of text was Quilt at Bellcore

(Bell Communications Research) [Leland, Fish, and Kraut 1988, Fish, et al.
editing, and 19881. Quilt was a tool to allow collaborative document creation,

review. Multiple parties could add notes to the document being edited using a

am (10 seconds) Remark by Harry Forsdick on 03/30/89, 8:37

aFigure 4.1. Slate shows an annotated icon to indicate speech in

document.

16 seconds recorded.

ecord ewind P E Pause Cut Paste
Record Relnd Plat IFast Fd Stop Pause I Cut Paste

Figure 4.2. The Slate voice editor.

Courtesy of Telcordia. Used with permission.

Voe 67Applclm and Eig of Stoaed

mdplQUILT
QUILT

Quilt is a computer-based tool to aid in the collaborative

production of documents, where both collaboration and document

are meant in a broad sense. In this paper we illustrate some

of the features of Quilt by showing a scenario of the use of the

A: mdpl Comment V Quilt system in our own collaboration.[CAll

Figure 4.3. Quilt used V symbols to indicate the presence of voice com
ments in a text document.

simple voice annotation scheme. Voice recordings were indicated in the text with
a "V" symbol as shown in Figure 4.3. Quilt was never widely deployed so it did
not receive significant use, but it motivated preliminary studies with tape
recorders that indicated that voice annotations were lengthier and more pene
trating than text.

The Xerox PARC (Palo Alto Research Center) Etherphone project' supports
voice annotation of text. It uses a "comic strip balloon" as an indicator of voice
stored as part of a text document as shown in Figure 4.4. The capability to mix

'Etherphone is discussed in more detail in Chapter 11, and its voice editor is discussed
later in this chapter.

Courtesy of Telcordia. Used with permission.

68 VOICE COMMUNICATION WITH COMPUTERS

Seniing Veice Messages

Finch has to be running, too. Your Walnut sender will have four
new buttons, @utton Record, wait for the beep, then record your voice
message. Yott can use the Etherphone's microphone if you wish (be
sure to turn it on), but the quality will be better if you use the
telephone handset instead. Button STOP! when you're done, Button
Play to hear what you said,

After you record a voice message, notice the VoiceFilelD field in
the header of your Walnut Sender, If you choose not to send the voice

Figure 4.4. Voice is indicated by a "balloon" at Xerox PARC. (Copyright

@1986, Xerox Corporation. Reproduced with permission of Xerox Corpo

ration.)

voice with text was extended by Zellweger to scripted documents, which

sequentially play back (or display) portions of a multimedia document [Zellweger

19891. A scripted document is a form of presentation with the management of

time and sequence an added dimension of authoring; the script provides a single

path through the document.
Stored speech is also used in multimedia documents that provide many paths

for presentation under control of the "reader." For example, the MUSE system

from M.I.T.'s Project Athena [Hodges et al. 19891 uses recorded video, audio,

and textual annotation for the interactive presentation of educational mate

rial.2 The student in a foreign language course may be asked to make decisions

on the basis of a spoken dialogue played from a videodisc. Text may be employed

during playback to define new vocabulary items. The student's response is indi

cated using the mouse, and the system responds with the next appropriate

sequence.

An entirely different approach is taken in documents which consist only of

voice, with nonvisual user interfaces. Muller defines an architecture for voice

documents as a network of short audio segments and points out some of the tim

ing issues with synchronizing user inputs with whichever segment is currently

playing [Muller and Daniel 1990]. Resnick built a telephone-based groupware

application, Hypervoice, that allowed callers to browse a community bulletin

board of voice entries [Resnick 1992a]. Each entry consisted of a number of short

voice recordings such as an event's time, description, and a contact person's tele

phone number; users navigated with touch tones. Arons' Hyperspeech used

speech recognition to navigate a hypermedia database consisting of audio inter

2MUSE is both the presentation system as well as the underlying language and editor

used for creating the presentations.

Courtesy of PARC. Used with permission.

69 Applkalio ndEdiling of Stored Yoke

views with five user interface researchers [Arons 1991b]. VoiceNotes is a user
interface to a handheld digital audio storage device; users employ speech recog
nition and mechanical buttons to traverse and edit lists of reminders [Stifelman
et al. 1993].

VOICE EDITING

While adding voice to a document or presentation users will occasionally make
mistakes and must correct them. To change a very short voice recording it is easy
to simply record the speech again; an example is the outgoing message on an
answering machine. Other applications, which use longer recordings, can benefit
from the addition of a voice editor. An editor allows a user to delete or move por
tions of a recording and to insert new audio into an existing recording; these oper
ations are controlled with a graphical user interface. An editor can also be used to
extract a portion of sound from a longer voice recording to be used in another
application. The rest of this chapter considers several architecture issues for
voice editors and illustrates editor user interfaces with a number of examples.

T~aupral Granularity

Audio editors may provide different levels of temporal granularity for specifying
the position within a sound at which a sound manipulation operation is to occur.
The granularity of an editor is determined both by the application's require
ments as well as by the nature of the stored sound to be edited. The temporal
granularity also places requirements on the editor for display of the sound being
edited.

A fine-grained editor allows edit operations to be performed at any point in
the sound. It makes no assumptions about the content of the sound and gives the
user complete control of editing. Fine-grained editors usually display sound as a
waveform (see Figure 4.5) or average magnitude (see Figure 4.6). Average mag
nitude is the sum of the absolute value of some number of audio samples divided
by the number ofsamples; samples are taken over a large enough window to aver
age multiple pitch periods. A mechanism may be provided to zoom in and out of
the sound view for local or global editing; the zooming changes the ratio of pixels
to time for display purposes.

A fine-grained editor is most useful for studio work such as producing music or
motion picture sound tracks. In these situations a great deal of flexibility is
required as a variety of sounds may be manipulated and very careful edits are
needed. For example, the Sound Droid digital audio editing system [Snell 1982]
was used in the motion picture industry and emulated existing analog studio
equipment both in user interface as well as basic functionality.

A coarse-grained editor provides much less temporal control but abstracts
sound into "chunks" based on periods of speech and silence. Coarse granularity is
more suitable for editing speech because speech consists of a series of semanti

70 VOICE COMMUNICATION WITH COMPUTERS

Figure 4.5. The MixView audio editor displays sound as a waveform.

cally meaningful phrases; a coarse-grained editor facilitates the user's identifying

phrases and editing them as units. The abstraction of sound into speech and

silence intervals also allows more succinct visual representations with reduced

screen space requirements.
The coarse-grained editor is well suited to removing spurious remarks, clean

ing up false starts from a recording, and replacing a sentence; it is not suited to

modifying individual words. In a study of users of an early voice editor, Allen

noted that subjects desired to edit individual words frequently [Allen 1983]1, but

in practice it is nearly impossible to modify a single word in a sentence without

having the result sound broken, with very unnatural prosody. Since users will not

be able to perform successful fine-grained editing of voice, coarse-grained editors

make no attempt to support this function, and use a simple binary representation

to simplify the user interface.

M Inpulatinof Audio Da

An audio editor must manipulate stored sound data in response to the user's com

mands. As users are likely to make changes and review them several times before
conmachieving the desired result, it is useful if the editor allows preview before

11 Appliations and Editing o Stoed Voice

Figure 4.6. Average magnitude display of a sound (top) and an envelope
display showing both positive and negative peaks (bottom).

mitting the changes to the original sound file. Although this could be done simply
by editing a copy of the sound file, most editors instead operate on an internal
representation of the sound that allows users to edit and review without chang
ing the file at all. When finished the user may choose to save the edited sound at
which point the file is changed. Many text editors employ similar techniques.

More importantly, editing an in-memory representation of the file offers sig
nificant performance improvements over editing a file directly. For example, if
the user deletes the first character of a text file or the first 100 milliseconds of
an audio file, it is time consuming to move the entire remainder of the file.3

3Under some operating systems this requires copying the entire file as well.

72 VOICE COMMUNICATION WITH COMPUTERS

Instead, the editor just modifies its description of the sound to note that

the very beginning of the file should be skipped over during playback. At the

end of the editing session the disk file can be changed in a single operation

avoiding slow file operations during editing. This is even more important in the

editing of sound than in text as sound files are much longer than most text files.

A chapter of this book may takes roughly 40,000 bytes of text storage, but for

many speech coding algorithms this would represent less than 10 seconds of

sound.
An audio editor may represent a sound being edited as a buffer or playback

list. This can be implemented as a linked list where each entry in the list points

to a sound file and indicates start and end points. Figure 4.7 shows how such a

representation is employed during editing. When a file is initially read into a

buffer (shown in the top portion of the figure), the buffer includes the entire

sound. The edit list contains a single entry with a start point of zero and stop

point at the end of the file; duration is represented by shading in the figure. A
"cut" operation removes a portion of the sound (shown in the middle of the

figure). Now the buffer list has two entries. The first entry points to the initial

part of the file at offset zero and extending up to the beginning of the cut section.

The second buffer entry points to the same file but starts after the cut section

and extends to the end of the sound. When the edit is reviewed, the editor plays

the first chunk of the file and immediately skips the middle part of the file to

play only the final segment. When the buffer is then written out to a file, a sin

gle homogeneous file is created by merging the two sections of sound (shown in

the bottom of the figure).
To insert a new sound into the middle of a buffer, the buffer must be split into

two list entries with the new sound added to the list in between them as shown

Figure 4.7. Edit buffers. At the top, a single buffer node points to an

entire file. In the middle, after removing a portion of the sound, two

buffer nodes are required to point to the two segments of the file. At the

bottom is the correct representation after the buffer has been written to

a file; the two portions of the original file have been merged into a single

continuous file.

Voice 13Applilions •nddiing of 1Stoed

in Figure 4.8. With each edit operation performed by the user, one or more
entries are likely to be added to the buffer list. After a number of operations, the
resulting representation is complex (see Figure 4.9), but it is hidden completely
from the user. Depending on how sound is stored in disk files, the complexity
may be largely hidden from the editing program as well; some sound file systems

13

Figure 4.8. Edit buffers showing insertion of a new sound into an exist

ing sound. The original sound at the top must be divided into two seg

ments, each with its own buffer node and a new node inserted in their

midst. The resulting buffer in the middle may then be written to a single

file at bottom.

Figure 4.9. After a number of edit operations, the resulting buffer may

become rather complicated.

74 VOICE COMMUNICATION WITH COMPUTERS

provide transparent sequential access to chunks of sound stored in different

locations on the disk.

EXAMPLES OF VOICE EDITORS

All sound editors include a user interface to the editing functions. These functions

include selection of a sound file for editing, playback ofthe sound, deleting part of

the sound, and inserting new sound. The appearance of the user interface

depends on the window system, graphical toolkits, and style conventions for the

particular operating environment in which it runs. The editor may be modeled

after existing tools with which users are familiar, such as text editors for the

office and audio equipment for the studio.
One of the earliest voice editors was built by Maxemchuk at Bell Laboratories

as part of an experimental speech storage facility [Maxemchuk 1980]. This editor

had a primitive interface based on an alphanumeric terminal; a subsequent ver

sion used a more sophisticated display. This section briefly describes a number of

more recent audio editors; they exhibit a wide range of user interfaces and sound

representations yet share many aspects of underlying software architecture.

Inteligent Ear, M.I.T.

The Intelligent Ear was an early voice editor from the Architecture Machine

Group (M.I.T.) [Schmandt 1981]. It displayed a sound as an amplitude envelope

using average magnitude to modulate both height and brightness as shown in
wereFigure 4.10. The entire sound was displayed on the screen; long sounds

shown with less temporal detail than short sounds because of the compression

required to fit them on the screen. The Intelligent Ear also used speech recog

nition to attempt to detect keywords in the sound and displayed these as text

with brightness indicating the degree of certainty with which the word was

recognized.
This editor used a touchscreen for input. When the user touched a location on

the sound display, a cursor moved to that location. When the play button was

touched, playback began at that point and the sound display changed color while

the cursor moved in synchronization with playback. This motion was provided to

aid the user's mental mapping of the visual cue of average magnitude to the

actual contents of the sound. Other editing functions included delete and record,

which enabled the user to specify an insertion point at which to record additional

speech. Edit operations were buffered in that they did not change any sound file

data, but this buffering was only one operation deep. After an insertion or dele

tion the user could play through and listen to the result; only after accepting this

result was the sound file actually changed on disk. An edit operation was either

accepted or rejected by touching a red or green button which appeared after the

edit, but the user was not able to make multiple edits and preview the result

without modifying the file.

of StoredAppliarins ondEditing Voie 75

Figure 4.10. The touch-sensitive user interface to the Intelligent Ear
editor.

The Intelligent Ear was a demonstration project which saw only limited inter
nal use by its authors to edit voice prompts in later research projects. It was novel
in its early use of a color graphical interface and touchscreen for voice editing.

liog Voke,Xerox PARC

The Tioga Voice audio editor at Xerox PARC was modeled after the Tioga text edi
tor's user interface and underlying data representations with the intention of
making editing voice similar to editing text [Ades and Swinehart 1986]. Tioga
Voice was designed to support audio in a variety of applications and could be used
as a listening tool as well as an editor.

The Tioga Voice user interface shown in Figure 4.11 supported a number of fea
tures. Portions of speech and silence were displayed by a binary representation in
a small bar (or "capillary tube" as described by its creators), and text annotation
could be added as well. On a color screen, recent changes or additions appeared
brighter than older sound segments. During recording the display changed
dynamically showing the new sound as a string of arrows both to keep a sense of

76 VOICE COMMUNICATION WITH (OMPUTERS

Ad Play STOP Save Store Redraw Mark DeleteMarks Dictatio
PlayFromSelection ResumeFromSelection ResumeFromEnd

Introduction fDescription
- a - -.......

4Example

@1986, Xerox CorporaFigure 411. The Tioga Voice editor. (Copyright
tion. Reproduced with permission of Xerox Corporation.)

Courtesy of PARC. Used with permission.

its relationship to the whole recording as well as to remind the user that

During playback, a marker moved acrossrecording was still in progress.
sound bars indicating the current play position.

To facilitate the manipulation of sound files, Tioga Voice kept track of the

rent selection, i.e., the piece of sound most recently referenced. During dict

mode, the selection corresponded to the most recent portion of speech record

allow for quick review or cancelling erroneous input. If the user began recor

coughed, and then stopped recording, this audio segment could be deleted

single mouse click.
of the Etherphone system, which provided sTioga Voice was built on top

storage and voice services through server processes running on other compu

Although voice segments were stored as sequential files on disk, they

file server as a list of segments referred to as a the voice accessed through
[Terry and Swinehart 19881; text was stored in a similar fashion, also referr

plus raw sound as a rope. A complete sound consisted of the rope database

age (see Figure 4.12). The voice ropes were similar to the edit buffer sch

except that they were saved on disk as part of the storage described above
anism provided by the server for all sound access. Each rope represented a

created more rthrough portions of one or more sound files; editing simply

editing simply created more ropes instead of actually modifyinBecause
underlying sound files, periodic garbage collection was required to recover unref

erenced disk files.

PX Editor, ell Northern Research

Another example of a sound editor is that which was developed for th
Computer Sys(Personal eXchange) project at Bell Northern Research's

et Research [Kamel, Emami Eckert 1990, Bowles al. 1991]. Laboratory and
greater detail in Chapter 11; in this section we consider ondiscussed in

sound editor.
The editor, shown in Figure 4.13, ran on Apple Macintosh computersPX

an external hardware interface for speech input. This editor supported se

nl

 t
 t

cur
ati
ed
din
by

ou
te
w
ro

ed
stor
em

mech
p
op
g t

e
te
P
ly

v

he
he

on
to

g,
 a

nd
rs.
ere
pe
 to

es

ath
es.
he

PX
ms

X is
its

with
eral

Aplicions and Ediling of Sld Voice 77

voice srorage

VF1:

VF2:

VR1:

VR2:

VR3:

Voice storage Database

VF1:

VF2:

VR1:

VR2:

VR3:

Voice storage Database
database

Re ulato Added Cost S Regulatorg:Rdded Cost

es

ons.
ech

a Phrase [Pause H Pauses Phrase >>»Pause H Pous

Figure 4.13. The PX sound editor showing two sound representati

The left view is a waveform envelope, while the right view shows spe

and silence intervals. (©1990.Reprinted by permission of BNR.)

VF1:

VF2:

VR1:

VR2:

VR3:

Voice storage Database

Figure by MIT OpenCourseWare, after Terry and Swinehart, 1988

78 YOICE COMMUNICATION WITH COMPUTERS

representations of sound. Figure 4.13 shows the same sound displayed in two

windows: one using a waveform envelope and the other showing speech and

silence intervals much like the Tioga Voice editor. This simple editor was meant

to be a common tool used in a variety of applications such as creating a voice mail

greeting and annotating text. In addition to the playback and recording functions

described previously in this chapter, the PX editor allowed the user to skip to the

next phrase during rapid playback.
PX utilized small segments of sound file storage called "voice clips," which

were stored and accessed much like Xerox's voice ropes. Unlike Etherphone,

however, the PX editor was implemented entirely on a single computer; there

was no server process involved. Voice clips described a series of portions of a file

to play in sequence, and every edit operation could produce multiple new voice

clips. A sound file held a number of voice clips followed by the reference audio

data, which was played as indicated by the clips. In contrast to Xerox's voice

ropes, the voice clip database was stored in the same file as the raw audio so it

could refer only to data in that file. If a new sound was to be made by merging

two other sounds, these would have to be copied into the data area of the new

sound file.

Sdit,Olivetti ReseuCenter, and M.I.T.Medi Ldoatory

A similar audio editor, sedit, was originally written at Olivetti Research Center

as part of the VOX audio server project [Arons et al. 19891.' It was subsequently

extended substantially at the Media Laboratory where it is in use today. Sedit

uses the X Window System for its graphical user interface and employs a sound

editor widget." The sound editor widget (see Figure 4.14) uses black and white

bars to display periods of speech and silence; this display is similar to that used

by Tioga Voice. A scroll bar beneath indicates how much of the entire sound file is

visible and allows the user to choose a portion of the sound to view in detail. As

the sound plays, a cursor (a vertical bar) moves across the display synchronously

with playback; if necessary, the scroll bar also moves to keep the current location

in view.

Sedit can edit multiple sounds simultaneously allowing data to be cut and

pasted between sound files; Figure 4.14 shows several sounds active within the

editor. The horizontal lines in the figure indicate the portion of a buffer selected

for the next operation. Selection is performed by dragging the cursor across the

sound with the mouse. Once a region is selected, the edit operation is indicated by

clicking on the appropriate button.

'VOX is described in detail in Chapter 12; discussion here is limited to support for

editing.
'In X Windows a "widget" is a basic user interaction object such as a button or scroll bar

that can be instantiated multiple times in multiple applications.

79 Appkicaior and Editing of Stored Vce

Figure 4.14. The sedit audio editor.

A year after the demise of the VOX project, sedit was revived at the MIT Media
Lab. Capabilities that formerly had been implemented in the server were
included in the editor and new functionality was added. One new function nor
malizes audio level among all buffer segments; this is useful when editing
together source material recorded with different microphone gain levels. Other
functions allow changing the time scale of the sound display widget and interac
tion with a selection mechanism allowing sound to be moved between applica
tions (see Chapter 12). This is the version of sedit shown in Figure 4.14.

Pttot/l, dIN.T. Me• Laboratry

Pitchtool was a special-purpose editor written at the Media Laboratory to aid in
the study of intonation. It is mentioned here as an example of an editor interface
designed specifically for a particular application. Pitchtool was used as much to
analyze recordings as to change them and so included such capabilities as vari
able playback speed, textual annotations, and spatial scaling of the sound to show
extended portions of dialog or detailed views of individual phrases.

Pitchtool, shown in Figure 4.15, displayed pitch, energy, and segment dura
tion of a digitized speech file. In the figure, the solid line represents pitch, while
the broken line represents energy. Pitchtool also provided for modification of
these parameters to allow hand-editing of the pitch and energy for experiments
in the synthesis of intonation. The mouse could be used to "paint" a new pitch
track or two points could be selected with pitch interpolated linearly between
them.

Because it was designed to manipulate the pitch of sounds, Pitchtool used Lin
ear Predictive Coding (see Chapter 3)for its speech storage. LPC encoding was

80 VOICE COMMUNICATION WITH COMPUTERS

S. Sed PC t: e Sun F Irn:t

-rcl
30) ml' ,r*nt. creoting pre-proce.Ing lueage fle ptpr.lnt.ptlag.. .

5 es$.I Ie: s egoffcts: 8 SugLeat S

CIImld :PE :contlDlV~w O

p Start:$ Stop: H38g0
oitchti
oload

rEI)
2>'

ptcht'whi

Posettt4lnl452 PltchUnVoiCet Energy:*

IG (E5

DeltaPltch:S It

835-ifttci~ax:*

Dkta~n.rgy:-S *elta1lme:953iS

Ene•glsAt:53SS o

p1toht'

11CV
* tbed

Figure 4.15. Pitchtool allowed editing of pitch and energy.

performed by a server, which included a signal processing card and small com

puter with local storage, communicating to the host workstation via a serial

interface (this server is described in more detail in Chapter 12). As with the orig

inal sedit editor, all manipulation of sound data was implemented in the server;

Pitchtool merely provided the user interface.

SUMMARY

This chapter described classes of applications for stored speech with emphasis on

the underlying system and coder requirements for each. For some of these

classes, speech is played only while others require recording as well. Recordings

can be casual as in voice mail messages or more formal for presentations or audio

memoranda. Recording for dictation may be short lived before it is converted to

text. Each class of operation places different requirements on audio storage in

terms of the quality required for data compression algorithms, speed to access

voice data, and the synchronization of playback with a graphical user interface or

other presentation media.
Particular emphasis was placed on interactive audio documents because they

highlight requirements for screen-based user interfaces and sound editors. The

81 Appiionso ldingof Stored oce

range of example systems and editors has revealed a variety of graphical user
interfaces and representations of sounds. Editors generally employ in-memory
buffers to describe sound file segments during editing, but this capability may be
included in the set of primitives provided by the sound file management system.
Similar storage issues arise with file formats and editors for all multimedia data
that require very large files that may become fragmented as a result of editing
operations.

