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Problem Set #3 Solutions 

Problems: 

P1: (Threshold estimates for Bacon­Shor code) 

P2: (Quantum Fredkin gate via teleportation) 

(a) The Fredkin gate is a controlled­SWAP gate, so we can easily construct a Toffoli gate by applying 

a CNOT gate on the target qubits before and after the Fredkin gate. The Toffoli gate and Hadamard 

gate have been shown to be computationally universal in a paper by Shi (quant­ph/0205115). It turns 
out you don’t need the state 0� + i 1� after all(!). | |

(b) Let us begin with a tedious, but straightforward solution. We can represent the quantum Fredkin 

operator in the form


UF = ⊗ II +
|0��0| |1��1| ⊗ J


where we have defined the operator J to be the swap operator on two qubits:
⎤⎡ 

J = 
⎢⎢⎢⎣ 

1 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 1 

⎥⎥⎥⎦ 
. 

Thus, applying UF to the operators in the set {IIX, IXI, IXX,XII, XIX, XXI,XXX}, gives: 

• g = IIX: 

Ug = UF (IIX)UF 

= 

= 

(|0��0| ⊗ II + |1��1| ⊗ J)(IIX)(|0��0| ⊗ II + |1��1| ⊗ J) 

|0��0| ⊗ IX + |1��1| ⊗ J(IX)J 

= |0��0| ⊗ IX + |1��1| ⊗ XI 

= C1,2C1,3X3 

= C1,2C1,3H3S
2 
3 H3 

where we have also defined the operator Ca,b as a CNOT with control qubit a and target qubit b. 
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• g = IXI: 

⊗ XI + ⊗ J(XI)JUg	 = |0��0| |1��1| 

= ⊗ XI + ⊗ IX |0��0| |1��1| 

=	 C1,2C1,3H2S
2 
2 H2 

• g = IXX: 

Ug	 = UF (IXI)(IIX)UF 

= UF (IXI)UF UF (IIX)UF 

= UIXIUIIX 

= H2S
2

3 H32 H2H3S
2 

• g = XII: 

Ug = (|0��0| ⊗ II + ⊗ J)(XII)( ⊗ II + ⊗ J)|1��1| |0��0| |1��1| 

= ⊗ J +|0��1| |1��0| ⊗ J 

= X ⊗ J (1) 

=	 C2,3C3,2C2,3H1S
2 
1 H1 

• g = XIX: 

Ug	 = UXIIUIIX 

= C2,3C3,2C2,3H1S
2

3 H31 H1C1,2C1,3H3S
2 

• g = XXI: 

Ug	 = UXIIUIXI 

= C2,3C3,2C2,3H1S
2

2 H21 H1C1,2C1,3H2S
2 

• g = XXX: 

Ug	 = (|0��0| ⊗ II + ⊗ J)(XXX)( ⊗ II + ⊗ J)|1��1| |0��0| |1��1| 

= ⊗ (XX)J + ⊗ J(XX)|0��1| |1��0| 

= XXX ⊗ IJ 

=	 C2,3C3,2C2,3H1S
2

2 H2H3S
2 

1 H1H2S
2

3 H3 

It follows from the fact that [J,XX] = 0. 

Similarly, for the set {IIZ, IZI, IZZ,ZII, ZIZ,ZZI, ZZZ}, we have: 

• g = IIZ: 

⊗ IZ + ⊗ J(IZ)JUg = |0��0| |1��1| 
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= ⊗ IZ + ⊗ ZI |0��0| |1��1| 

= H1C2,1C3,1H1S
2 
3 

Note that X1CPHASE1,3X1 =CPHASE1,3Z3 and H1C2,1H1 = CPHASE1,2. 

• g = IZI: 

Ug = H1C2,1C3,1H1S
2 
2 

• g = IZZ: 

2 S
2Ug = S2 
3 

• g = ZII: 

Ug = (|0��0| ⊗ II + ⊗ J)(ZII)( ⊗ II + ⊗ J)|1��1| |0��0| |1��1| 

= ⊗ II − ⊗ II |0��0| |1��1|


= S2

1 

• g = ZIZ: 

3 S
2Ug = H1C2,1C3,1H1S

2 
1 

• g = ZZI: 

2 S
2Ug = H1C2,1C3,1H1S

2 
1 

• g = ZZZ: 

1 S
2Ug = S2
2 S

2 
3 

Simpler solution. It is sufficient to consider the action of U on X1, X2, X3, Z1, Z2, and Z3 

since Ug1g2U
† = Ug1U

†Ug2U
†. By inspection, UX3U

† = Λ1(X2)X1Λ1(X3)X1 where X1Λ1(X3)X1 

is a zero­controlled X3 gate. Similarly, UX2U
† = X1Λ1(X2)X1Λ1(X3), UX1U

† = X1 ⊗ SWP2,3, 
UZ3U

† = Λ1(Z2)X1Λ1(Z3)X1, UZ2U
† = X1Λ1(Z2)X1Λ1(Z3), and UZ1U

† = Z1. It is possible to 

simplify products of these gates, i.e. UX2X3U
† = X2X3. 

(c) We start with the circuit in Figure 1 that uses three Bell states to teleport the qubits and applies the 

Fredkin gate on them. Now, the only thing that we have to do is to commute the classically controlled 

correction gates to the other side of the Fredkin gate as illustrated in Figure 2. The resulting circuit 
uses χ� and a few classically controlled operations to give a realization for UF .|

Alternate solution. Another approach to this problem is to use the “X” and “Z” one­bit teleportation 

circuits presented in lecture. In particular, the Fredkin gate commutes with ZZZ and with ZXX, 
so there are two ways of constructing the circuit. Let F denote the Fredkin gate. If we use XXX 

3 



 

Bell 
State 
Meas. 

Z X 

 Z1 

X1 

X1 Z1 EPR 
pair 

Bell 
State 
Meas. 

Z X 

 Z2 

X2 

X2 Z2 EPR 
pair 

Bell 
State 
Meas. 

Z X 

 Z3 

X3 

X3 Z3 EPR 
pair 

•  

×  

×  

Figure 1: Teleportation of three qubits followed by Fredkin gate. 

teleportation, the state we need is the equal superposition 

|χ1� = FH1H2H3|000� = 
1 √
8 

1� 

z1 ,z2 ,z3 =0 

|z1z2z3� . (2) 

If we use XZZ teleportation, the state we need is 

|χ2� = FH1|000� = 
1 √
2 
(|000� + |100�) . (3) 

P3: (1.) Using XXX teleportation, we find the following circuit: 
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If we use XZZ teleporation instead, we find the following circuit: 
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Bell 
State 
Meas. 

 Z1 

X1 

EPR 
pair 

Bell 
State 
Meas. 

 Z2 

X2 

Z 

Z2 EPR 
pair 

Bell 
State 
Meas. 

 Z3 

X3 

EPR 
pair 

•  

×  

×  ×  

×  

X1 

X 

X2 

•  

•  

X 

X1 

•  

Z 

Z1 

X 

X3 

Z 

Z3 

X2+X3 

H 

Z2+Z3 

H 

Figure 2: Quantum circuit for teleportation of Fredkin gate. 
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P4: (Cluster model implementation of quantum Fourier transform) 
(a) In the quantum Fourier transform circuit, there are 3 controlled Rz gates (S and T ), 3 H gates 
and 1 swap gate which is equivalent to 3 CNOTs. Moreover, in order to implement a controlled Rz 

gate, we need 2 CNOTs and 2 Rz gates. On the other hand, cluster state realization of any Rz or H 

gate requires adding one new qubits to the cluster while for CNOTs 2 new qubits are needed. Putting 

all these numbers together, we will aggregately need 3 × (2 + 2 × 2) + 3 × 2 + 3 + 3 = 30 qubits in the 

cluster state. Note that we have also added 3 qubits for the output of the circuit that is not measured 
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in the process. 
(b) If we find two operators A and B such that AB = I and AXBX = Rz (θ), we can obtain a 

controlled Rz (θ) using the circuit in Figure 3. 

 

A B 

•  •  

•  S 

ψ  

0 mY S ψ  

m  

•  

×  

×  •  

•  

Fredkin gate 

Figure 3: Quantum circuit for decomposition controlled rotation. 

Let A = Rz (α) and B = Rz (β). Hence, 

Rz (θ) = AXBX = Rz (α)XRz (β)X = Rz (α)Rz (−β) = Rz (α − β) = ⇒ θ = α − β 

I = AB = Rz (α)Rz (β) = Rz (α + β) = ⇒ 2π = α + β 

and by choosing α = 5π/4, β = 3π/4 or α = 9π/8, β = 7π/8 we can implement controlled­S or 
controlled­T out of CNOT and Rz operations that have known implementations in cluster state QC. 

(c) This circuit is not a very efficient cluster implementation, but is perhaps the most straightforward 

one. 

Alternative solutions 

(a) 

There are cluster state implementations of Rx(θ), Rz (θ), and CNOT that require 2, 2, and 4 intermediate 

qubits, respectively, shown in Figure 5. The notation is taken from quant­ph/0404082. 

Any single qubit unitary can be Euler decomposed as eiφRz (θ1)Rx(θ2)Rz (θ3). Also, Figure 4.6 in N&C 

also shows how to implement an arbitrary controlled­U gate using 2 CNOTs and 3 single qubit gates. 

The 3­qubit quantum fourier transform has 3 single qubits gates and three controlled unitary gates 
that can be implemented using 24 Z rotations, 12 X rotations, and 6 CNOTs. Therefore, 96 qubits 
and 3 output qubits are sufficient to simulate the 3­qubit quantum fourier transform using a cluster 
state. We will do a little better in part (b). 

(b) 

Since Rz (θ/2)Rz (−θ/2) = I and (Rz (θ/2)X)(Rz (−θ/2)X) = Rz (θ), Λ(Rz (θ)) = Rz (θ/2)Λ(X)Rz (−θ/2)Λ(X). 
The Euler decompositions for the remaining gates in the 3­qubit quantum fourier transform are 

S = e−iπ/4Rz (π/2), T = e−iπ/8Rz (π/4) and H = eiπ/2Rz (π/2)Rx(π/2)Rz (π/2). The 3­qubit fourier 
transform circuit is reexpressed as single qubit rotations in Figure 6. Figure 7 shows a cluster state 

and a measurement procedure for the 3­qubit quantum fourier transform that uses 67 qubits. 

(c) 

This is not optimal. We can remove all pairs of adjacent X measurements, since these are “wires”. 
Furthermore, Hadamard can be implemented by a single X measurement. 
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Figure 4: Cluster circuit implementation of three­qubit QFT. 

Figure 5: Measurement patterns for a universal set of gates 
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Figure 6: Further decomposition of 3­qubit QFT 

Figure 7: Cluster state and measurement pattern for 3­qubit QFT 
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