MASSACHUSETTS INSTITUE OF TECHNOLOGY

Department of Physics, EECS, and Department of Applied Math

MIT 6.443J / 8.371J / 18.409 / MAS. 865
Quantum Information Science
April 6, 2006

Problem Set \#4 Solutions

Problems:

P1: (Quantum factoring as a feedback process)

See attached document.
P2: (Measures of pure state entanglement) Begin by recalling the proof of the Schmidt decomposition. Let $|\psi\rangle=\sum_{i j} c_{i j}|i\rangle|j\rangle=(C \otimes I) \sum_{i}|i\rangle|i\rangle$ where $C:=\sum_{i j}|i\rangle\langle j|$. By the singular value decomposition, $C=A \Lambda B$, where A, B are unitary, $\Lambda=\sum_{k} \lambda_{k}|k\rangle\langle k|$ with $\lambda_{1} \geq \cdots \geq \lambda_{d} \geq 0$ and Λ is uniquely determined. (If there are degenerate eigenvalues then A and B are not uniquely determined.) Also $1=\sum_{i j}\left|c_{i j}\right|^{2}=\operatorname{tr} C^{\dagger} C=\operatorname{tr} \Lambda^{\dagger} \Lambda=\sum_{k} \lambda_{k}^{2}$. Thus $|\psi\rangle=(A \Lambda B \otimes I) \sum_{i}|i\rangle|i\rangle=\left(A \otimes B^{T}\right)(\Lambda \otimes I) \sum_{i}|i\rangle|i\rangle$, since $(B \otimes I) \sum_{i}|i\rangle|i\rangle=\left(I \otimes B^{T}\right) \sum_{i}|i\rangle|i\rangle$. Define $\left|k_{A}\right\rangle=A|i\rangle$ and $\left|k_{B}\right\rangle=B|i\rangle$ and we have

$$
|\psi\rangle=\sum_{k} \lambda_{k}\left|k_{A}\right\rangle\left|k_{B}\right\rangle
$$

(a) If $\operatorname{Sch}(|\psi\rangle)=1$ then $|\psi\rangle=\left|\psi_{A}\right\rangle\left|\psi_{B}\right\rangle$ follows from the definition. The converse is a special case of the agument below.
Note that if a bipartite state $|\psi\rangle$ can be expressed as any state of the form $|\psi\rangle=\sum_{k}\left|\phi_{k}\right\rangle\left|k_{B}\right\rangle$, where $\left|k_{B}\right\rangle$ are orthonormal states of B and $\left|\phi_{k}\right\rangle$ are arbitrary (possibly un-normalized) states of A, then the number of terms in the sum is at least as great as the Schmidt number of $|\psi\rangle$.
Since $\operatorname{rank}(A+B) \leq \operatorname{rank} A+\operatorname{rank} B$,

$$
\operatorname{Sch}(\psi)=\operatorname{rank} \operatorname{tr}_{\mathrm{B}}|\psi\rangle\langle\psi|=\sum_{\mathrm{k}}\left|\phi_{k}\right\rangle\left\langle\phi_{k}\right| \leq \sum_{\mathrm{k}} 1,
$$

where the final expression is simply the number of terms in the original sum.
This fact also holds for decompositions in which Bob's states are not orthonormal either. If $|\psi\rangle=\sum_{k}\left|\phi_{k}\right\rangle\left|\varphi_{k}\right\rangle$, then $\rho=\operatorname{tr}_{B}|\psi\rangle\langle\psi|=\sum_{k, l}\left|\phi_{k}\right\rangle\left\langle\phi_{l}\right|\left\langle\varphi_{k}\right|\left|\varphi_{l}\right\rangle$ and for any $|v\rangle, \rho|v\rangle \in \operatorname{span}\left\{\left|\phi_{k}\right\rangle\right\}$, which has dimension at most equal to the number of terms in the original sum.
(b) Suppose Alice applies U and Bob applies V. Then $(U \otimes V)|\psi\rangle=\sum_{k} \lambda_{k} U\left|k_{A}\right\rangle \otimes V\left|k_{B}\right\rangle$ and by the uniqueness of the Schmidt decomposition, the Schmidt number is unchanged. Classical communication has no effect unless Alice or Bob performs a measurement since any classical message must be uncorrelated with the state.
However, we can also show that Schmidt number is nonincreasing under local measurement and classical communication, though not constant. Suppose Alice performs a local measurement $\left\{M_{j}\right\}$
and transmits the outcome j to Bob. The resulting state is $\left(M_{j} \otimes I\right)|\psi\rangle=\sum_{k} \lambda_{k}\left(M_{j}\left|k_{A}\right\rangle\right) \otimes\left|k_{B}\right\rangle$ and by part (d), this has Schmidt number no greater than the number of terms in the sum, which is $\operatorname{Sch}(|\psi\rangle)$.
(c) The Schmidt numbers for $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle=|+\rangle|+\rangle$ are 3 and 1, respectively. Also,

$$
\begin{aligned}
&\left|\phi_{3}\right\rangle=\frac{|0\rangle|+\rangle+|1\rangle|-\rangle}{2} \\
&\left|\phi_{4}\right\rangle: \quad \rho_{A}=\operatorname{tr}_{B}\left|\phi_{4}\right\rangle\left\langle\phi_{4}\right|=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right], \quad \text { Sch.N. }=1 \\
& \text { Sch.N. }=2
\end{aligned}
$$

P3: (Quantum search by continuous-time simulation) //
(a)

$$
\begin{align*}
U(\Delta t)= & U_{\psi}(\Delta t) U_{x}(\Delta t) \tag{1}\\
= & e^{-i|\psi\rangle\langle\psi| \Delta t} e^{-i|\psi\rangle\langle\psi| \Delta t} \tag{2}\\
= & e^{-i \frac{I+\vec{\psi} \cdot \vec{\sigma}}{2} \Delta t} e^{-i \frac{I+\vec{z} \cdot \vec{\sigma}}{2} \Delta t} \tag{3}\\
= & \left(\cos \left(\frac{\Delta t}{2}\right)-i \sin \left(\frac{\Delta t}{2}\right)(I+\vec{\psi} \cdot \vec{\sigma})\right)\left(\cos \left(\frac{\Delta t}{2}\right)-i \sin \left(\frac{\Delta t}{2}\right)(I+\vec{z} \cdot \vec{\sigma})\right) \tag{4}\\
= & \cos ^{2}\left(\frac{\Delta t}{2}\right)-i \cos \left(\frac{\Delta t}{2}\right) \sin \left(\frac{\Delta t}{2}\right)(I+\vec{z} \cdot \vec{\sigma}) \tag{5}\\
& -i \cos \left(\frac{\Delta t}{2}\right) \sin \left(\frac{\Delta t}{2}\right)(I+\vec{\psi} \cdot \vec{\sigma})-\sin ^{2}\left(\frac{\Delta t}{2}\right)(I+\vec{z} \cdot \vec{\sigma})(I+\vec{\psi} \cdot \vec{\sigma}) . \tag{6}
\end{align*}
$$

Using the identity

$$
\begin{equation*}
(\vec{\psi} \cdot \vec{\sigma})(\vec{z} \cdot \vec{\sigma})=\vec{\psi} \cdot \vec{z}+(\vec{\psi} \times \vec{z}) \cdot \sigma \tag{7}
\end{equation*}
$$

we have that

$$
\begin{align*}
U(\Delta t)= & \left(\cos ^{2}\left(\frac{\Delta t}{2}\right)-\sin ^{2}\left(\frac{\Delta t}{2}\right) \vec{\psi} \cdot \hat{z}\right) I \\
& -2 i \sin \left(\frac{\Delta t}{2}\right)\left(\cos \left(\frac{\Delta t}{2}\right) \frac{\vec{\psi}+\hat{z}}{2}+\sin \left(\frac{\Delta t}{2}\right) \frac{\vec{\psi} \times \hat{z}}{2}\right) \cdot \vec{\sigma} \tag{8}
\end{align*}
$$

(b) Substituting for $\Delta t=\pi$ in $e^{-i \frac{I+\psi \cdot \sigma}{2}}$ and $e^{-i \frac{I+\vec{z} \cdot \vec{\sigma}}{2}}$, we get

$$
\begin{equation*}
U_{\psi}(\pi)=e^{-i|\psi\rangle\langle\psi| \pi}=I-2|\psi\rangle\langle\psi| \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{x}(\pi)=e^{-i|x\rangle\langle x| \pi}=I-2|x\rangle\langle x| \tag{10}
\end{equation*}
$$

which are the same as the Grover search iteration steps up to a global phase factor.
(c) We want to get to \hat{z} from $\vec{\psi}$ with K times rotating around the axis \vec{r} (Eq.(6.26), Nielsen \& Chuang) each time the angle $\theta . K$ is required to be of the order $\mathcal{O}(\sqrt{N})$. We approximate the
total rotation angle by the angle between \hat{z} and $\vec{\psi}$, that is, $\cos ^{-1}(\hat{z} \cdot \vec{\psi})$.

$$
\begin{align*}
K(\sqrt{N}) \theta= & \cos ^{-1}(\hat{z} \cdot \vec{\psi}) \\
= & \cos ^{-1}\left(\alpha^{2}-\beta^{2}\right) \\
= & \cos ^{-1}\left(\frac{2}{N}-1\right) \\
= & \pi-\cos ^{-1}\left(1-\frac{2}{N}\right) \\
& \Rightarrow \theta=\frac{\pi-\cos ^{-1}\left(1-\frac{2}{N}\right)}{K(\sqrt{N})} \tag{11}
\end{align*}
$$

Now, substituting for θ in (Eq.(6.28), Nielsen \& Chuang), we get

$$
\begin{equation*}
\sin ^{2}\left(\frac{\Delta t}{2}\right)=\frac{N}{2}\left[1-\cos \left(\frac{\pi-\cos ^{-1}\left(1-\frac{2}{N}\right)}{K(\sqrt{N})}\right)\right] \tag{12}
\end{equation*}
$$

The smallest integer for K that makes the right hand side less that 1, gives the appropriate choice for Δt.

P4: (Typical sequences (computational))

(a)

$$
\begin{align*}
H(X) & =H\left(X_{1}\right) \tag{13}\\
& =-0.8 \log 0.8-0.1 \log 0.1-0.1 \log 0.1 \tag{14}\\
& \approx 0.922 \tag{15}
\end{align*}
$$

(b) In general, a sequence is ϵ-typical when

$$
\begin{equation*}
2^{-n(H(X)+\epsilon)} \leq p\left(x_{1}, \ldots, x_{n}\right) \leq 2^{-n(H(X)-\epsilon)} \tag{16}
\end{equation*}
$$

So, in this case, a sequence is ϵ-typical when

$$
\begin{equation*}
2^{-n(0.922+\epsilon)} \leq 0.8^{n_{a}} 0.1^{n-n_{a}} \leq 2^{-n(0.922-\epsilon)} \tag{17}
\end{equation*}
$$

(c)

$$
\begin{equation*}
2^{-100(1.022)} \leq 0.8^{n_{a}} 0.1^{100-n_{a}} \leq 2^{-100(0.822)} \tag{18}
\end{equation*}
$$

so

$$
\begin{equation*}
77 \leq n_{a} \leq 84 \tag{19}
\end{equation*}
$$

Thus,

$$
\begin{align*}
\operatorname{Pr}\left(A_{0}^{(100)} \cdot 1\right) & =\sum_{i=77}^{84} \operatorname{Pr}\left(n_{a}=i\right) \tag{20}\\
& =\sum_{i=77}^{84} 2^{n-i}\binom{100}{i} 0 \cdot 8^{i} 0.1^{n-i} \tag{21}\\
& =0.682 . \tag{22}
\end{align*}
$$

(d)

$$
\begin{equation*}
\left|A_{0.1}^{(100)}\right|=\sum_{i=77}^{84} 2^{n-i}\binom{100}{i} \tag{23}
\end{equation*}
$$

which requires 98 bits to represent; this is very close to the value of $n H\left(X_{1}\right)=92$.

