Lecture # 18, Quantum Computation 2: Quantum Protocols And

Communications

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad

Administrata:
Projects will be presented in class in May, 3 presentations a day, 20 min slots.Sign up list

is on the Wikki, first come first serve. Papers due May 12 (1/2 way between presentations).

Outline:

Tasks over a distributed set of parties

1. Perspective

2. Classical Communication Complexity
3. Ex. Fingerprinting (Q)

4. Digital Signatures

5. Q.D.S. Scheme
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I. ~ measure of trust
If a party shares a pure, entangled state, then it is only known to that party. So, it acts
as a measure of trust.

How do you use it?



2. CLASSICAL COMMUNICATION COMPLEXITY

= General setting

f is publicly known
f:4{0,1}" x {0,1}* — {0,1}
Alice: z € {0,1}"
Bob: y € {0,1}"
How much communication do they need to compute f?
= Options:
(1) Classical or Quantum bits

(2) Can compute answer with

- exactly (no error)
- bounded error +e

- one sided error

(3) Assumptions

- Prior Shared Randomness (secret keys)

- Shared Entanglement

2.1. Example: Equality

0 if x=y
f(z,y) = Eq(z,y) = '
1 if otherwise

D(FEq) = n is deterministic or exact answer

R(Eq) = 7 is Random or Bounded error



2.1.1. Randomized Protocol:

= Setup:
A and B agree on P > n/e, where € is the error and P is a prime.

Locally compute 2 polynomials over the field F(P),
A(z) =21 + Toz + 232° + ...+ 22"t

B(z) = y1 + yoz + y322 + . + Y2

Note for C(z) = A(z) — B(z),

r=y—C(z)=0

r#y—(# z'sst. Clz)=0)<n

= Protocol:

A chooses random z € F(P). Sends (z, A(z))
B computes C(z), outputs EQ if C' = o, NEQ otherwise.

= Analysis

Prob(C(z) =0,z # y) < n/p <, by def. of P earlier.
A sends 2log P bits = o(logn — log 1/¢)

R(EQ) ~ O(logn —log1/€) = O(logn)

Approach: communicate the result of a function rather than the number itself.

2.2. Table of Costs

Problem Exact Classical R Quantum Random Quantum Exact
EQ n logn log n n
Parity /Inner Product n n n n
Dist J n n Vn ?
Distributed Deutsch Joza n logn logn logn

RAZ (a promise function) n'/*/logn logn




3. FINGER PRINTING AS A SPECIFIC EXAMPLE

= 3 party model, 1979, “simultaneous message passing” Andrew Yan

Referee f(x.y)
specific case where f(z,y) = EQ(z,y)
= Classical: dn — m bit code with the following properties:
{E£(x) € {0, 1} = € {0,1}",
m = cn,

dist(E(z), E(y)) > (1— 6)m it 2 # }
J, ¢ constants, E(x) code words, dist = # different bits.

Example: Justen codes 1972
any ¢ > 2,0 < 5 + fracllse

Let E;(x) denote the " bit of the code word. Suppose Alice and Bob share a secret key
k € {0, 1}losm

3.1. Protocol

(e
?
Referee WI=RY)
G



Not Error:
PTObcorrect(Ek(x) # Ek(y)lx # y) 2 - 5
Boosting: Repeat the protocol r times, with r values of k. Probg,o, — 0"

Disadvantage: Need r secret keys

= with no secret keys? Open problem from Yao, 1979
Solved in 1996, Ambians, Neuman to Szegedy, Babai
Requires Q(y/n) bits

= Quantum Protocol for same problem
needs O(logn) qubits without secret key
Buhrman, Cleve, Watrow 2001

%)

where |U,) and |¥,) are quantum bit strings.

3.2. Two Theorems
3.2.1. Thm 1

322" states |¥,) of m qubits such that (U,/|¥,) < 6 for 2’ # x and § const (for some §).

(so, the states are not quite orthogonal.)

Proof:

m—1
Let [0,) = == " [Bu(@) k)
Then: =

(W, |¥;) =1



rF Yy — (V|0,) = Z(Ek(:v)lEé(y)><klk’>
=1 Z (Ej(x)|Ey(y

< m5/m = ¢ bits the same, though x and y differ

Note: stabilizers also work, or states on the unit circle

3.2.2. Thm 2

no-cloning =- no perfect equality test.
Given 2 states |U,) and |¥,) s.t. either |¥,) = |¥,) or |¥,) # |¥,) and |(V,|¥,)| <,

Then which case is true can be determined with probability of error < #

Proof:

Try to measure the operator swap

Case
0o A
o> H H X z= L s

0,¥,,¥,) — [0+ 1,¥,, U,)

- |O, v, ‘ij> + |1a v, ‘ij>

—0+1,¥,,V,)+|0—-1,V,, V)

= [0)(|Wa, Wy) + [0y, Wa)) + [1)(|WWy) — [y, ¥a))

First portion is symmetric case, second portion is antisymmetric case, = |¢)

Prob(z = 1|z # y) = 1|(¢]¢)|?
(0] — (W )5, [, 5,))



7(2 = 2[(.|,)?)
<l2-2) = 31 - &)
Probability of Error < 2(1 — 6?)

Probabilistic equality test that requires a promise.

%)

Finger Printing Protocol:

Referee

% )

Probability of Error < (1 — ¢%) = const.
Can boost this by repeating O(log %) times — P.ypor < €

Concept: Replaced shared randomness with qubits (this does not always work).



4. DIGITAL SIGNATURE

Scenario:

Judge Charlie

Determines if Determines if
sigisvalid or not sigisvalid or not

Transferable msg Authentication

Classical Protocol

———————————————————

gen Public key
secret

| key |

3 - (m,sig) test
 Alice Bob

= Desirable Properties

(1) Not forgeable
(2) Non-repudiatable

(3) Efficient w.r.t. signature size (Keys reusable)
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4.1. One Time Classical Digital Signature Scheme (Lamport ’79)

let f(x) be a one-way function (if you have z, getting f(z) is easy. If you have f(z), you
can’t find x. f(z) # f(y), or is exponentially rare.
f(x) is public knowledge

———————————————————

qon oo G0, (L f9)
(ko’kl)
3 3 ok
b=0or 1 5 sig T (b,f(l@
(b MaLch? ™ jnvalid
fffff Alice Bob
example:

Sz, t]) = wy ko = [7,13], f(ko) =91 ky = [3,17], f(k1) = 51
Public Key: (0,91),(1,51)

msg’s that you can send are [0,[7,13]] or [1,[3,17]]. Once sent, you've burned your key. It

is not efficient.

Rompel: 1990: Info-secure DSS < One way function

Currently, we settle for computationally secure, but not informationally theoretic secure.
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5. QUANTUM DIGITAL SECURITY SCHEME

Def:
k has [ bits. |W¥y) is the quantum fingerprint states from earlier, and has n qubits.

n ~ O(logl)

Claim:
This is a one way function, by Holevo’s Thm. Can only extract n classical bits, given no

prior entanglement.

Protocol:

O145), (114>)

gen f(x)
ok
msg b sig Bob apcl
(b.k) Charlie "\ jnvalid
Swap Test

Problem Solution
Equality Test = Repeat: use m keys
is probabilistic for each b

|Wy) leaks log ! = Limit copies of public key
bits about k to T < £ (so, only T

people can verify it)

Are all Public keys = Symmetry test need certificate

the same? authority to check and distribute
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= Main Result
Info-theoretic one time public key secure D.S.S. whose classical msg b is signed by a

classical private key string (l;:, b) corresponding to a public quantum key |Ug,)

Resources Used

Size of b = 1 bit

ky = O(LM) bits

|T:) = O(mlog L) qubits

# copies |Ug) < é

Security
L2

Prob[successful forgery] < e~ UM

Prob[successful repudiation] < e—1C2=C1IVM

where Cy and C; are constants.

Problems

How to reuse keys?

How to reduce to using no Q.C. or Q. Memory

What are C; and Cy? (Existence proved by Gottesman and Chuang)

Physical Implementation



