Lecture \# 18, Quantum Computation 2: Quantum Protocols And Communications

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad

Administrata:
Projects will be presented in class in May, 3 presentations a day, 20 min slots.Sign up list is on the Wikki, first come first serve. Papers due May 12 ($1 / 2$ way between presentations).

Outline:
Tasks over a distributed set of parties

1. Perspective
2. Classical Communication Complexity
3. Ex. Fingerprinting (Q)
4. Digital Signatures
5. Q.D.S. Scheme

1. PERSPECTIVE

$I_{c} \simeq$ measure of trust
If a party shares a pure, entangled state, then it is only known to that party. So, it acts as a measure of trust.

How do you use it?

2. CLASSICAL COMMUNICATION COMPLEXITY

\Rightarrow General setting
f is publicly known
$f:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}$
Alice: $x \in\{0,1\}^{n}$
Bob: $y \in\{0,1\}^{n}$
How much communication do they need to compute f ?
\Rightarrow Options:
(1) Classical or Quantum bits
(2) Can compute answer with

- exactly (no error)
- bounded error $\pm \epsilon$
- one sided error
(3) Assumptions
- Prior Shared Randomness (secret keys)
- Shared Entanglement

2.1. Example: Equality

$f(x, y)=E q(x, y)=\begin{array}{cc}0 & \text { if } \mathrm{x}=\mathrm{y} \\ 1 & \text { if otherwise }\end{array}$
$D(E q)=n$ is deterministic or exact answer
$R(E q)=$? is Random or Bounded error

2.1.1. Randomized Protocol:

\Rightarrow Setup:

A and B agree on $P>n / \epsilon$, where ϵ is the error and P is a prime.

Locally compute 2 polynomials over the field $F(P)$,

$$
\begin{gathered}
A(z)=x_{1}+x_{2} z+x_{3} z^{2}+\ldots+x_{n} z^{n-1} \\
B(z)=y_{1}+y_{2} z+y_{3} z^{2}+\ldots+y_{n} z^{n-1}
\end{gathered}
$$

Note for $C(z)=A(z)-B(z)$,
$x=y \rightarrow C(z)=0$
$x \neq y \rightarrow(\#$ z's s.t. $\mathrm{C}(\mathrm{z})=0) \leq n$
\Rightarrow Protocol:
A chooses random $z \in F(P)$. Sends $(z, A(z))$
B computes $C(z)$, outputs EQ if $C=o$, NEQ otherwise.
\Rightarrow Analysis
$\operatorname{Prob}(C(z)=0, x \neq y) \leq n / p<\epsilon$, by def. of P earlier.
A sends $2 \log P$ bits $=o(\log n-\log 1 / \epsilon)$
$\mathrm{R}(\mathrm{EQ}) \sim O(\log n-\log 1 / \epsilon) \cong O(\log n)$

Approach: communicate the result of a function rather than the number itself.

2.2. Table of Costs

Problem	Exact Classical	R	Quantum Random Quantum Exact	
EQ	n	$\log n$	$\log n$	n
Parity/Inner Product	n	n	n	n
Dist J	n	n	\sqrt{n}	$?$
Distributed Deutsch Joza	n	$\log n$	$\log n$	$\log n$
RAZ (a promise function)		$n^{1 / 4} / \log n$	$\log n$	

3. FINGER PRINTING AS A SPECIFIC EXAMPLE

$\Rightarrow 3$ party model, 1979, "simultaneous message passing" Andrew Yan

specific case where $f(x, y)=E Q(x, y)$
\Rightarrow Classical: $\exists n \rightarrow m$ bit code with the following properties:
$\left\{E(x) \in\{0,1\}^{m} \mid x \in\{0,1\}^{n}\right.$,

$$
m=c n,
$$

$$
\operatorname{dist}(E(x), E(y)) \geq(1-\delta) m \text { if } x \neq y\}
$$

δ, c constants, $E(x)$ code words, dist $=\#$ different bits.

Example: Justen codes 1972
any $c>2, \delta<\frac{9}{10}+f r a c 115 c$

Let $E_{i}(x)$ denote the $i^{\text {th }}$ bit of the code word. Suppose Alice and Bob share a secret key $k \in\{0,1\}^{\log m}$

3.1. Protocol

Not Error:
$\operatorname{Prob}_{\text {correct }}\left(E_{k}(x) \neq E_{k}(y) \mid x \neq y\right) \geq 1-\delta$
Boosting: Repeat the protocol r times, with r values of k. Prob $_{\text {error }} \rightarrow \delta^{r}$
Disadvantage: Need r secret keys
\Rightarrow with no secret keys? Open problem from Yao, 1979
Solved in 1996, Ambians, Neuman to Szegedy, Babai
Requires $\Omega(\sqrt{n})$ bits
\Rightarrow Quantum Protocol for same problem
needs $O(\log n)$ qubits without secret key
Buhrman, Cleve, Watrow 2001

where $\left|\Psi_{x}\right\rangle$ and $\left|\Psi_{y}\right\rangle$ are quantum bit strings.

3.2. Two Theorems

3.2.1. Thm 1

$\exists 2^{2^{m}}$ states $\left|\Psi_{x}\right\rangle$ of m qubits such that $\left\langle\Psi_{x^{\prime}} \mid \Psi_{x}\right\rangle \leq \delta$ for $x^{\prime} \neq x$ and δ const (for some δ).
(so, the states are not quite orthogonal.)

Proof:
Let $\left|\Psi_{x}\right\rangle=\frac{1}{\sqrt{m}} \sum_{k=o}^{m-1}\left|E_{k}(x)\right\rangle|k\rangle$
Then:
$\left\langle\Psi_{x} \mid \Psi_{x}\right\rangle=1$
$x \neq y \rightarrow\left\langle\Psi_{x} \mid \Psi_{y}\right\rangle=\frac{1}{m} \sum_{k k^{\prime}}\left\langle E_{k}(x) \mid E_{k}^{\prime}(y)\right\rangle\left\langle k \mid k^{\prime}\right\rangle$
$=\frac{1}{m} \sum_{k}\left\langle E_{k}(x) \mid E_{k}(y)\right\rangle$
$\leq m \delta / m=\delta$ bits the same, though x and y differ

Note: stabilizers also work, or states on the unit circle

3.2.2. Thm 2

no-cloning \Rightarrow no perfect equality test.
Given 2 states $\left|\Psi_{x}\right\rangle$ and $\left|\Psi_{y}\right\rangle$ s.t. either $\left|\Psi_{x}\right\rangle=\left|\Psi_{y}\right\rangle$ or $\left|\Psi_{x}\right\rangle \neq\left|\Psi_{y}\right\rangle$ and $\left|\left\langle\Psi_{x} \mid \Psi_{y}\right\rangle\right| \leq \delta$, Then which case is true can be determined with probability of error $\leq \frac{1+\delta^{2}}{2}$

Proof:

Try to measure the operator swap

$\left|0, \Psi_{x}, \Psi_{y}\right\rangle \rightarrow\left|0+1, \Psi_{x}, \Psi_{y}\right\rangle$
$\rightarrow\left|0, \Psi_{x}, \Psi_{y}\right\rangle+\left|1, \Psi_{x}, \Psi_{y}\right\rangle$
$\rightarrow\left|0+1, \Psi_{x}, \Psi_{y}\right\rangle+\left|0-1, \Psi_{x}, \Psi_{y}\right\rangle$
$=|0\rangle\left(\left|\Psi_{x}, \Psi_{y}\right\rangle+\left|\Psi_{y}, \Psi_{x}\right\rangle\right)+|1\rangle\left(\left|\Psi_{x} \Psi_{y}\right\rangle-\left|\Psi_{y}, \Psi_{x}\right\rangle\right)$
First portion is symmetric case, second portion is antisymmetric case, $=|\phi\rangle$
$\operatorname{Prob}(z=1 \mid x \neq y)=\frac{1}{4}|\langle\phi \mid \phi\rangle|^{2}$
$=\frac{1}{4}\left|\left(\left\langle\Psi_{x} \Psi_{y}\right|-\left\langle\Psi_{y} \Psi_{x}\right|\right)\left(\left|\Psi_{x} \Psi_{y}\right\rangle-\left|\Psi_{y} \Psi_{x}\right\rangle\right)\right|$
$=\frac{1}{4}\left(2-2\left|\left\langle\Psi_{x} \mid \Psi_{y}\right\rangle\right|^{2}\right)$
$\leq \frac{1}{4}\left(2-2 \delta^{2}\right)=\frac{1}{2}\left(1-\delta^{2}\right)$
Probability of Error $\leq \frac{1}{2}\left(1-\delta^{2}\right)$
Probabilistic equality test that requires a promise.
Finger Printing Protocol:

Probability of Error $\leq \frac{1}{2}\left(1-\delta^{2}\right)=$ const.
Can boost this by repeating $O\left(\log \frac{1}{\epsilon}\right)$ times $\rightarrow P_{\text {error }}<\epsilon$
Concept: Replaced shared randomness with qubits (this does not always work).

4. DIGITAL SIGNATURE

Scenario:

Transferable msg Authentication
Classical Protocol

Alice
Bob
\Rightarrow Desirable Properties
(1) Not forgeable
(2) Non-repudiatable
(3) Efficient w.r.t. signature size (Keys reusable)

4.1. One Time Classical Digital Signature Scheme (Lamport '79)

let $\mathrm{f}(\mathrm{x})$ be a one-way function (if you have x, getting $f(x)$ is easy. If you have $f(x)$, you can't find $x . f(x) \neq f(y)$, or is exponentially rare.
$f(x)$ is public knowledge

example:
$f([x, t])=x y k_{0}=[7,13], f\left(k_{0}\right)=91 k_{1}=[3,17], f\left(k_{1}\right)=51$

Public Key: $(0,91),(1,51)$
msg's that you can send are $[0,[7,13]]$ or $[1,[3,17]]$. Once sent, you've burned your key. It is not efficient.

Rompel: 1990: Info-secure DSS \Leftrightarrow One way function
Currently, we settle for computationally secure, but not informationally theoretic secure.

5. QUANTUM DIGITAL SECURITY SCHEME

Def:
$k \mapsto\left|\Psi_{k}\right\rangle$
k has l bits. $\left|\Psi_{k}\right\rangle$ is the quantum fingerprint states from earlier, and has n qubits. $n \sim O(\log l)$

Claim:

This is a one way function, by Holevo's Thm. Can only extract n classical bits, given no prior entanglement.

Protocol:

Problem	Solution
Equality Test	\Rightarrow Repeat: use m keys
is probabilistic	for each b
$\left\|\Psi_{k}\right\rangle$ leaks $\log l$	\Rightarrow Limit copies of public key
bits about k	to $T<\frac{L}{N}$ (so, only T
	people can verify it)

Are all Public keys \Rightarrow Symmetry test need certificate the same? authority to check and distribute

\Rightarrow Main Result
Info-theoretic one time public key secure D.S.S. whose classical msg b is signed by a classical private key string (\tilde{k}, b) corresponding to a public quantum key $\left|\Psi_{\tilde{k} b}\right\rangle$

Resources Used

Size of $b=1$ bit
$\tilde{k_{b}}=O(L M) \mathrm{bits}$
$\left|\tilde{\Psi}_{k}\right\rangle=O(m \log L)$ qubits
\# copies $\left|\Psi_{\tilde{k}}\right\rangle \leq \frac{L}{\log L}$
Security
Prob[successful forgery] $\leq e^{-\left(1-\frac{C_{2}}{1-\delta^{2}}\right) M}$
$\operatorname{Prob}[$ successful repudiation $] \leq e^{-\left|C_{2}-C_{1}\right| \sqrt{M}}$
where C_{2} and C_{1} are constants.

Problems

How to reuse keys?
How to reduce to using no Q.C. or Q. Memory
What are C_{1} and C_{2} ? (Existence proved by Gottesman and Chuang)
Physical Implementation

