Lecture # 18, Quantum Computation 2: Quantum Protocols And Communications

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad

Administrata:

Projects will be presented in class in May, 3 presentations a day, 20 min slots. Sign up list is on the Wikki, first come first serve. Papers due May 12 (1/2 way between presentations).

Outline:

Tasks over a distributed set of parties

1. Perspective

- 2. Classical Communication Complexity
- 3. Ex. Fingerprinting (Q)
- 4. Digital Signatures
- 5. Q.D.S. Scheme

1. PERSPECTIVE

 $I_c \simeq$ measure of trust

If a party shares a pure, entangled state, then it is only known to that party. So, it acts as a measure of trust.

How do you use it?

2. CLASSICAL COMMUNICATION COMPLEXITY

 $\begin{array}{l} \Rightarrow \mbox{ General setting} \\ \mbox{f is publicly known} \\ f: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\} \\ \mbox{Alice: } x \in \{0,1\}^n \\ \mbox{Bob: } y \in \{0,1\}^n \\ \mbox{How much communication do they need to compute f?} \end{array}$

 \Rightarrow Options:

- (1) Classical or Quantum bits
- (2) Can compute answer with
 - exactly (no error)
 - bounded error $\pm\epsilon$
 - one sided error

•••

- (3) Assumptions
 - Prior Shared Randomness (secret keys)
 - Shared Entanglement

2.1. Example: Equality

$$f(x,y) = Eq(x,y) =$$

$$\begin{array}{c} 0 & \text{if } x=y \\ 1 & \text{if otherwise} \end{array}$$

D(Eq) = n is deterministic or exact answer R(Eq) = ? is Random or Bounded error

2.1.1. Randomized Protocol:

 \Rightarrow Setup:

A and B agree on $P > n/\epsilon$, where ϵ is the error and P is a prime.

Locally compute 2 polynomials over the field F(P),

$$A(z) = x_1 + x_2 z + x_3 z^2 + \dots + x_n z^{n-1}$$

$$B(z) = y_1 + y_2 z + y_3 z^2 + \dots + y_n z^{n-1}$$

Note for
$$C(z) = A(z) - B(z)$$
,
 $x = y \rightarrow C(z) = 0$
 $x \neq y \rightarrow (\# z$'s s.t. $C(z)=0) \le n$

 \Rightarrow Protocol:

A chooses random $z \in F(P)$. Sends (z, A(z))

B computes C(z), outputs EQ if C = o, NEQ otherwise.

$$\Rightarrow \text{Analysis}$$

$$Prob(C(z) = 0, x \neq y) \leq n/p < \epsilon, \text{ by def. of } P \text{ earlier.}$$

$$\text{A sends } 2 \log P \text{ bits} = o(\log n - \log 1/\epsilon)$$

$$\text{R(EQ)} \sim O(\log n - \log 1/\epsilon) \cong O(\log n)$$

Approach: communicate the result of a function rather than the number itself.

Problem	Exact Classical	R	Quantum Random	Quantum Exact
EQ	n	$\log n$	$\log n$	n
Parity/Inner Product	n	n	n	n
Dist J	n	n	\sqrt{n}	?
Distributed Deutsch Joza	n	$\log n$	$\log n$	$\log n$
RAZ (a promise function	.)	$n^{1/4}/\log n$	$\log n$	

2.2. Table of Costs

3. FINGER PRINTING AS A SPECIFIC EXAMPLE

 \Rightarrow 3 party model, 1979, "simultaneous message passing" Andrew Yan

specific case where f(x, y) = EQ(x, y)

 \Rightarrow Classical: $\exists n \rightarrow m$ bit code with the following properties:

$$\begin{split} \{E(x) \in \{0,1\}^m | \ x \in \{0,1\}^n, \\ m = cn, \\ dist(E(x),E(y)) \geq (1-\delta)m \text{ if } x \neq y \} \\ \delta, c \text{ constants}, \ E(x) \text{ code words}, \ dist = \# \text{ different bits}. \end{split}$$

Example: Justen codes 1972 any c > 2, $\delta < \frac{9}{10} + frac 115c$

Let $E_i(x)$ denote the i^{th} bit of the code word. Suppose Alice and Bob share a secret key $k \in \{0, 1\}^{\log m}$

Not Error:

 $Prob_{correct}(E_k(x) \neq E_k(y) | x \neq y) \geq 1 - \delta$ Boosting: Repeat the protocol r times, with r values of k. $Prob_{error} \rightarrow \delta^r$ Disadvantage: Need r secret keys

⇒ with no secret keys? Open problem from Yao, 1979 Solved in 1996, Ambians, Neuman to Szegedy, Babai Requires $\Omega(\sqrt{n})$ bits

 \Rightarrow Quantum Protocol for same problem needs $O(\log n)$ qubits without secret key Buhrman, Cleve, Watrow 2001

where $|\Psi_x\rangle$ and $|\Psi_y\rangle$ are quantum bit strings.

3.2. Two Theorems

 $\exists 2^{2^m}$ states $|\Psi_x\rangle$ of *m* qubits such that $\langle \Psi_{x'}|\Psi_x\rangle \leq \delta$ for $x' \neq x$ and δ const (for some δ). (so, the states are not quite orthogonal.)

Proof:

Let
$$|\Psi_x\rangle = \frac{1}{\sqrt{m}} \sum_{k=o}^{m-1} |E_k(x)\rangle |k\rangle$$

Then:
 $\langle \Psi_x | \Psi_x \rangle = 1$

$$\begin{aligned} x \neq y \to \langle \Psi_x | \Psi_y \rangle &= \frac{1}{m} \sum_{kk'} \langle E_k(x) | E'_k(y) \rangle \langle k | k' \rangle \\ &= \frac{1}{m} \sum_k \langle E_k(x) | E_k(y) \rangle \\ &\leq m \delta/m = \delta \text{ bits the same, though x and y differ} \end{aligned}$$

Note: stabilizers also work, or states on the unit circle

3.2.2. Thm 2

no-cloning \Rightarrow no perfect equality test.

Given 2 states $|\Psi_x\rangle$ and $|\Psi_y\rangle$ s.t. either $|\Psi_x\rangle = |\Psi_y\rangle$ or $|\Psi_x\rangle \neq |\Psi_y\rangle$ and $|\langle\Psi_x|\Psi_y\rangle| \leq \delta$, Then which case is true can be determined with probability of error $\leq \frac{1+\delta^2}{2}$

Proof:

Try to measure the operator swap

$$\begin{split} &|0, \Psi_x, \Psi_y \rangle \rightarrow |0+1, \Psi_x, \Psi_y \rangle \\ &\rightarrow |0, \Psi_x, \Psi_y \rangle + |1, \Psi_x, \Psi_y \rangle \\ &\rightarrow |0+1, \Psi_x, \Psi_y \rangle + |0-1, \Psi_x, \Psi_y \rangle \\ &= |0\rangle (|\Psi_x, \Psi_y \rangle + |\Psi_y, \Psi_x \rangle) + |1\rangle (|\Psi_x \Psi_y \rangle - |\Psi_y, \Psi_x \rangle) \end{split}$$

First portion is symmetric case, second portion is antisymmetric case, = $|\phi\rangle$ $Prob(z = 1|x \neq y) = \frac{1}{4} |\langle \phi | \phi \rangle|^2$ $= \frac{1}{4} |\langle \Psi_x \Psi_y | - \langle \Psi_y \Psi_x | \rangle (|\Psi_x \Psi_y \rangle - |\Psi_y \Psi_x \rangle)|$ $= \frac{1}{4} (2 - 2|\langle \Psi_x | \Psi_y \rangle|^2)$ $\leq \frac{1}{4} (2 - 2\delta^2) = \frac{1}{2} (1 - \delta^2)$ Probability of Error $\leq \frac{1}{2} (1 - \delta^2)$

Probabilistic equality test that requires a promise.

Finger Printing Protocol:

Probability of Error $\leq \frac{1}{2}(1-\delta^2) = \text{const.}$

Can boost this by repeating $O(\log \frac{1}{\epsilon})$ times $\rightarrow P_{error} < \epsilon$

Concept: Replaced shared randomness with qubits (this does not always work).

4. DIGITAL SIGNATURE

Transferable msg Authentication

Classical Protocol

 \Rightarrow Desirable Properties

(1) Not forgeable

(2) Non-repudiatable

(3) Efficient w.r.t. signature size (Keys reusable)

4.1. One Time Classical Digital Signature Scheme (Lamport '79)

let f(x) be a one-way function (if you have x, getting f(x) is easy. If you have f(x), you can't find x. $f(x) \neq f(y)$, or is exponentially rare.

f(x) is public knowledge

example:

$$f([x,t]) = xy \ k_0 = [7,13], \ f(k_0) = 91 \ k_1 = [3,17], \ f(k_1) = 51$$

Public Key: (0,91),(1,51)

msg's that you can send are [0,[7,13]] or [1,[3,17]]. Once sent, you've burned your key. It is not efficient.

Rompel: 1990: Info-secure DSS \Leftrightarrow One way function

Currently, we settle for computationally secure, but not informationally theoretic secure.

5. QUANTUM DIGITAL SECURITY SCHEME

Def:

$$k \mapsto |\Psi_k\rangle$$

k has l bits. $|\Psi_k\rangle$ is the quantum fingerprint states from earlier, and has n qubits. $n\sim O(\log l)$

Claim:

This is a one way function, by Holevo's Thm. Can only extract n classical bits, given no prior entanglement.

Protocol:

Problem	Solution	
Equality Test	\Rightarrow Repeat: use m keys	
is probabilistic	for each b	
$ \Psi_k\rangle$ leaks $\log l$	\Rightarrow Limit copies of public key	
bits about k	to $T < \frac{L}{N}$ (so, only T	
	people can verify it)	

Are all Public keys \Rightarrow Symmetry test need certificate

the same? authority to check and distribute

 $\Rightarrow {\rm Main \ Result}$

Info-theoretic one time public key secure D.S.S. whose classical msg b is signed by a classical private key string (\tilde{k}, b) corresponding to a public quantum key $|\Psi_{\tilde{k}b}\rangle$

Resources Used Size of b = 1 bit $\tilde{k}_b = O(LM)$ bits $|\tilde{\Psi}_k\rangle = O(m \log L)$ qubits # copies $|\Psi_{\tilde{k}}\rangle \le \frac{L}{\log L}$

Security

Prob[successful forgery] $\leq e^{-(1-\frac{C_2}{1-\delta^2})M}$ Prob[successful repudiation] $\leq e^{-|C_2-C_1|\sqrt{M}}$ where C_2 and C_1 are constants.

Problems

How to reuse keys?

How to reduce to using no Q.C. or Q. Memory

What are C_1 and C_2 ? (Existence proved by Gottesman and Chuang)

Physical Implementation