
Lecture # 18, Quantum Computation 2: Quantum Protocols And


Communications 

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad 

Administrata: 

Projects will be presented in class in May, 3 presentations a day, 20 min slots.Sign up list 

is on the Wikki, first come first serve. Papers due May 12 (1/2 way between presentations). 

Outline:


Tasks over a distributed set of parties


1. Perspective 

2. Classical Communication Complexity 

3. Ex. Fingerprinting (Q) 

4. Digital Signatures 

5. Q.D.S. Scheme 
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1. PERSPECTIVE


Algorithms Communications/ 

Channel Capacities
Computational Ic = coherent information,
Complexity channel capacity in 

asymptotic limit. 

Cryptography

Quantum Key Dist.Public Key Authentication and andEncryption 
(ex. RSA) 

Encryption Secret Sharing 

measure of trust Ic ≃
If a party shares a pure, entangled state, then it is only known to that party. So, it acts 

as a measure of trust. 

How do you use it? 
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2. CLASSICAL COMMUNICATION COMPLEXITY 

General setting ⇒ 
f is publicly known 

n nf	 : {0, 1} × {0, 1} �→ {0, 1} 
nAlice: x ∈ {0, 1}

nBob: y ∈ {0, 1}

How much communication do they need to compute f?


⇒ Options: 

(1) Classical or Quantum bits 

(2) Can compute answer with 

- exactly (no error) 

- bounded error ±ǫ 

-	 one sided error


...


(3) Assumptions 

- Prior Shared Randomness (secret keys)


- Shared Entanglement


2.1. Example: Equality 

0 if x=y 
f(x, y) = Eq(x, y) =


1 if otherwise


D(Eq) = n is deterministic or exact answer


R(Eq) = ? is Random or Bounded error
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2.1.1. Randomized Protocol: 

⇒ Setup: 

A and B agree on P > n/ǫ, where ǫ is the error and P is a prime. 

Locally compute 2 polynomials over the field F (P ), 

A(z) = x1 + x2z + x3z
2 + ... + xnzn−1 

B(z) = y1 + y2z + y3z
2 + ... + ynz

n−1 

Note for C(z) = A(z) − B(z), 

x = y → C(z) = 0 

x = y →(# z’s s.t. C(z)=0)≤ n 

Protocol: ⇒ 
A chooses random z ∈ F (P ). Sends (z, A(z)) 

B computes C(z), outputs EQ if C = o, NEQ otherwise. 

⇒ Analysis 

Prob(C(z) = 0, x = y) ≤ n/p < ǫ, by def. of P earlier. 

A sends 2 log P bits = o(log n − log 1/ǫ) 

R(EQ) ∼ O(log n − log 1/ǫ) ∼ O(log n)= 

Approach: communicate the result of a function rather than the number itself. 

2.2. Table of Costs 

Problem Exact Classical R Quantum Random Quantum Exact 

EQ n log n log n n 

Parity/Inner Product n n n n 

Dist J n n 
√

n ? 

Distributed Deutsch Joza n log n log n log n 

RAZ (a promise function) n1/4/ log n log n 
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3. FINGER PRINTING AS A SPECIFIC EXAMPLE 

⇒ 3 party model, 1979, “simultaneous message passing” Andrew Yan 

A:x 

B:y 

Referee f(x,y) 

specific case where f(x, y) = EQ(x, y) 

⇒ Classical: ∃n m bit code with the following properties: →
m n ,{E(x) ∈ {0, 1} | x ∈ {0, 1}


m = cn,


dist(E(x), E(y)) ≥ (1 − δ)m if x = y}
δ, c constants, E(x) code words, dist = # different bits. 

Example: Justen codes 1972 

9 any c > 2, δ < 
10 

+ frac115c 

Let Ei(x) denote the ith bit of the code word. Suppose Alice and Bob share a secret key 

k ∈ {0, 1}log m 

3.1. Protocol 

A:x 

B:y 

Referee 

E (x) 

E (y) 

E (x) = E (y) 

k 

k 

k k 
? 
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Prob

Not Error:


correct(Ek(x) = Ek(y) x = y) ≥ 1 − δ


Boosting: Repeat the protocol r times, with r values of k. Proberror δr →
Disadvantage: Need r secret keys 

with no secret keys? Open problem from Yao, 1979 ⇒
Solved in 1996, Ambians, Neuman to Szegedy, Babai 

Requires Ω(
√

n) bits 

⇒ Quantum Protocol for same problem 

needs O(logn) qubits without secret key 

Buhrman, Cleve, Watrow 2001 

A:x 

B:y 

Ψ 

Ψ 

Referee 

x 

y 

where Ψx� and Ψy� are quantum bit strings. | |

3.2. Two Theorems 

3.2.1. Thm 1 

∃ 22m 

states Ψx� of m qubits such that �Ψx ′ Ψx� ≤ δ for x ′ = x and δ const (for some δ). 

(so, the states are not quite orthogonal.) 

Proof: 

m−1 

Let Ψx� = √1
m 

Ek(x)� k�| ||
k=o 

Then: 

| 1�Ψx Ψx� = 
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x 1 E ′ k′ 
k(y)��ky� = �Ek(x)

� 

′kk

Ψy → �Ψx|= | |
m 

1 = 
m

� 

k 

�Ek(x) Ek(y)�|

≤ mδ/m = δ bits the same, though x and y differ 

Note: stabilizers also work, or states on the unit circle 

3.2.2. Thm 2 

no-cloning ⇒ no perfect equality test.


Given 2 states Ψx� and Ψy� s.t. either Ψx� = Ψy� or Ψx� = Ψy� and �Ψx Ψ ≤ δ,
| | | | | � | | | y�|
1+δ2 

Then which case is true can be determined with probability of error ≤


Proof:


Try to measure the operator swap


2 

H H0 z 

Ψ 

Ψ 

x 

y 

Swap 

Case 
0 A 

= 
1 B 

0, Ψx, Ψ 0 + 1, Ψx, Ψy�| y� → |
0, Ψx, Ψy� +→ | |1, Ψx, Ψy� 
0 + 1, Ψx, Ψy� + 0 − 1, Ψx, Ψ→ | | y� 

= 0�( Ψx, Ψy� + Ψy, Ψx�) + 1�( ΨxΨ Ψy, Ψx�)| | | | | y� − |

1 
4 

First portion is symmetric case, second portion is antisymmetric case, = φ�|
Prob(z = 1 x = y) �φ φ�|| =
 |
 |
= 1 

4
(�ΨxΨy yΨx )( ΨxΨ ΨyΨx�)| | − �Ψ | | y� − | | 

2 
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=


≤


1
4 

1
4 

(2 − 2 �Ψx Ψ| | y�|2) 
(2 − 2δ2) =
 1

2
(1 − δ
2) 

Probability of Error ≤
 1
2
(1 − δ
2) 

Probabilistic equality test that requires a promise. 

Finger Printing Protocol: 

A:x 

B:y 

Ψ 

Ψ 

Referee 

x 

y 

Probability of Error ≤
 1
2
(1 − δ
2) = const. 

Can boost this by repeating O(log 1)
ǫ

times Perror < ǫ → 
Concept: Replaced shared randomness with qubits (this does not always work).
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4. DIGITAL SIGNATURE 

Scenario: 

(m,sig) 
Bob 

(m,sig)
A:msg m Judge Charlie 

Determines if Determines if 
sig is valid or not sig is valid or not 

Transferable msg Authentication 

Classical Protocol 

gen 

sign 

secret 
key 

m 

Public key 

test 
validity 

(m,sig) 

Alice Bob 

⇒ Desirable Properties 

(1) Not forgeable 

(2) Non-repudiatable 

(3) Efficient w.r.t. signature size (Keys reusable) 
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4.1. One Time Classical Digital Signature Scheme (Lamport ’79) 

let f(x) be a one-way function (if you have x, getting f(x) is easy. If you have f(x), you 

can’t find x. f(x) = f(y), or is exponentially rare. 

f(x) is public knowledge 

(b,f(k ) 

gen f(x) 

sig 
(b,k ) 

(k ,k ) 

b 

(0,f(k )), (1, f(k )) 

b 
match? 

ok 

invalid 

0 1 

b = 0 or 1 

0 1 

Alice Bob 

example:


f([x, t]) = xy k0 = [7, 13], f(k0) = 91 k1 = [3, 17], f(k1) = 51


Public Key: (0,91),(1,51) 

msg’s that you can send are [0,[7,13]] or [1,[3,17]]. Once sent, you’ve burned your key. It 

is not efficient. 

Rompel: 1990: Info-secure DSS ⇔ One way function 

Currently, we settle for computationally secure, but not informationally theoretic secure. 
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5. QUANTUM DIGITAL SECURITY SCHEME 

Def: 

k �→ |Ψk� 
k has l bits. |Ψk� is the quantum fingerprint states from earlier, and has n qubits. 

n ∼ O(log l) 

Claim: 

This is a one way function, by Holevo’s Thm. Can only extract n classical bits, given no 

prior entanglement. 

Protocol: 

gen f(x) 

sig 
(b,k )b 

msg b 

(0,| >), (1,| >)ΨΨ0 1 

Bob and 
Charlie invalid 

ok 

Swap Test 

Problem Solution


Equality Test ⇒ Repeat: use m keys 

is probabilistic for each b 

Ψk� leaks log l ⇒ Limit copies of public key |
bits about k L 

N
to T < (so, only T 

people can verify it) 

Are all Public keys ⇒ Symmetry test need certificate 

the same? authority to check and distribute 

B 

C 

ok?A 
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Main Result ⇒
Info-theoretic one time public key secure D.S.S. whose classical msg b is signed by a 

k, b) corresponding to a public quantum key Ψ˜classical private key string (˜ | kb� 

Resources Used


Size of b = 1 bit


k̃b = O(LM) bits


|Ψ̃k� = O(m logL) qubits


L# copies |Ψ˜ log L
k� ≤


Security 

≤ e
−(1− C2 

Prob[successful forgery] 1−δ2 
)M 

Prob[successful repudiation] ≤ e−|C2−C1|
√

M 

where C2 and C1 are constants. 

Problems


How to reuse keys?


How to reduce to using no Q.C. or Q. Memory


What are C1 and C2? (Existence proved by Gottesman and Chuang)


Physical Implementation



