Lecture \# 2, Quantum Computation 2: QEC Criteria

Lecture notes of Isaac Chuang, transcribed by Jennifer Novosad Outline:
0. Review

1. Classical Coding
2. Q. Coding
3. Operator Measurement and Error Syndromes
4. Shor 9 Qubit Code
5. Quantum Error correction Codes Criteria (QEC criteria)

$$
\begin{gathered}
\text { 0. Review } \\
\rho \xrightarrow{\varepsilon} \rho^{\prime} \\
\varepsilon(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger} \text { where } \sum_{k} E_{k} E_{k}^{\dagger}=I
\end{gathered}
$$

1. CLASSICAL CODING

FIG. 1: a binary symmetric channel
$\mathrm{P}=$ prob of error
Definition: A Classical $[\mathrm{n}, \mathrm{k}, \mathrm{d}]$ code is a set of $2^{k} \mathrm{n}$-bit strings which have a minimum Hamming distance d.

Definition: A Hamming distance between two bit strings is $d(x, y)=w(x \oplus y)$ where \oplus is the x -or operator, and w is an operation that counts the number of ones.

Example: $0_{L(\text { ogical })}=000,1_{L}=111$ is a $[3,1,3]$ code

could send	could receive	prob	decode	prob. of error
$0_{L}=000$	000	$(1-p)^{3}$	0	
	001	$p(1-p)^{2}$	0	
	010	$p(1-p)^{2}$	0	
	100	$p(1-p)^{2}$	0	
	011	$p^{2}(1-p)$	1	$p^{2}(1-p)+$
101	$p^{2}(1-p)$	1	$p^{2}(1-p)+$	
	110	$p^{2}(1-p)$	1	$p^{2}(1-p)+$
	111	p^{3}	1	p^{3}

So, the total probability of error is $3 p^{2}-2 p^{3}=O\left(p^{2}\right)$

2. QUANTUM CODING

1995: Thought error correction to be impossible!

1. States collapse on measurement
2. Classically error occurs or does not occur. In Q. M., errors are continuous: $\alpha|0\rangle+$ $\beta|1\rangle \rightarrow(\alpha+\varepsilon)|0\rangle+\ldots$
3. No cloning Thm prohibits copying, so cannot create $\alpha|0\rangle+\beta|1\rangle \rightarrow(\alpha|0\rangle+\beta|1\rangle)(\alpha|0\rangle+$ $\beta|1\rangle)(\alpha|0\rangle+\beta|1\rangle)$

The Solutions:

1. Measure only the effect of the environment, not the state (i.e. did an error occur?)
2. \& 3. Orthogonalize errors using entanglement: the environment has done one thing, or another, in an entangled way. $\alpha \mid$ didsomething $\rangle+\beta \mid$ didnothing \rangle

Example: The Quantum Bit Flip Code:
$\left|0_{L}\right\rangle=|000\rangle$
$\left|1_{L}\right\rangle=|111\rangle$
$\left|\Psi_{L}\right\rangle=\alpha\left|0_{L}\right\rangle+\beta\left|1_{L}\right\rangle$
suppose $\varepsilon(\rho)=(1-P) \rho+P X \rho X$ where P is the probability of error and X is the error operator.
$A \xrightarrow{\varepsilon(\rho)} B$
Define: An $[[\mathrm{n}, \mathrm{k}]]$ quantum code C is a k -qubit subspace of an n -qubit Hilbert space. So, for our example, $\mathrm{k}=3, \mathrm{n}=1$.

Input	$\xrightarrow{\varepsilon^{\otimes 3}}$ Output	prob	decode	prob. of error
$\|\Psi\rangle=\alpha\|000\rangle+\beta\|111\rangle$	$\alpha\|000\rangle+\beta\|111\rangle$	$(1-p)^{3}$	0	
	$\alpha\|001\rangle+\beta\|110\rangle$	$p(1-p)^{2}$	0	
	$\alpha\|010\rangle+\beta\|101\rangle$	$p(1-p)^{2}$	0	
	$\alpha\|100\rangle+\beta\|011\rangle$	$p(1-p)^{2}$	0	
	$\alpha\|011\rangle+\beta\|100\rangle$	$p^{2}(1-p)$	1	$p^{2}(1-p)+$
	$\alpha\|101\rangle+\beta\|010\rangle$	$p^{2}(1-p)$	1	$p^{2}(1-p)+$
	$\alpha\|110\rangle+\beta\|001\rangle$	$p^{2}(1-p)$	1	$p^{2}(1-p)+$
	$\alpha\|111\rangle+\beta\|000\rangle$	p^{3}	1	p^{3}

3. OPERATOR MEASUREMENT

Given U with eigenvalues ± 1, eigenvectors $\left|u_{ \pm}\right\rangle$
Definition: Measuring U

Initially, the state is $|0\rangle\left(C_{0}\left|u_{+}\right\rangle+C_{1}\left|u_{-}\right\rangle\right)$
After the first Hadamard, $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left(C_{0}\left|u_{+}\right\rangle+C_{1}\left|u_{-}\right\rangle\right)$
After the Controlled-U gate, $\frac{1}{\sqrt{2}}\left(|0\rangle\left(C_{0}\left|u_{+}\right\rangle+C_{1}\left|u_{-}\right\rangle\right)+|1\rangle\left(C_{0}\left|u_{+}\right\rangle-C_{1}\left|u_{-}\right\rangle\right)\right)$
After the last Hadamard, $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\left(C_{0}\left|u_{+}\right\rangle+C_{1}\left|u_{-}\right\rangle\right)+(|0\rangle-|1\rangle)\left(C_{0}\left|u_{+}\right\rangle-C_{1}\left|u_{-}\right\rangle\right)$
$=|0\rangle C_{0}\left|u_{+}\right\rangle+|1\rangle C_{1}\left|u_{-}\right\rangle$
If the measurement is $z=0$, then $\mid P$ si $\rangle=\left|u_{+}\right\rangle$. (With prob $C_{0}^{2}, z=0$)
If the measurement is $z=1$, then $|P s i\rangle=\left|u_{-}\right\rangle$. (With prob $\left.C_{1}^{2}, z=1\right)$

3.1. Error Correction Syndrome Measurement

$U_{1}=\sigma_{z}^{1} \sigma_{z}^{2}=\sigma_{z} \sigma_{z} I$
$U_{2}=\sigma_{z}^{2} \sigma_{z}^{3}=I \sigma_{z} \sigma_{z}$

state	U_{1}	U_{2}
$\alpha\|000\rangle+\beta\|111\rangle$	0	0
$\alpha\|001\rangle+\beta\|110\rangle$	0	1
$\alpha\|010\rangle+\beta\|101\rangle$	1	1
$\alpha\|100\rangle+\beta\|011\rangle$	1	0

TABLE I: 0 represents a +1 eigenstate of U_{i}, and 1 represents a - 1 eigenstate.

Steps to Error Correction:

1. measure syndrome operators (here, $U_{1} \& U_{2}$
2. Apply recovery operator R (here, $00 \rightarrow I, 01 \rightarrow \sigma_{x}^{3}, 11 \rightarrow \sigma_{x}^{2}, 10 \rightarrow \sigma_{x}^{1}$

To create the initial state $\left|P s i_{L}\right\rangle$:

And then to error correct:

note: the double lines indicate classical information.

Claim:

This scheme also corrects for a small continuous rotation error!
We will do this on one bit to demonstrate.
$\varepsilon(\rho)=e^{i \epsilon \sigma_{x}} \rho e^{i \epsilon \sigma_{x}}$
$e^{-\epsilon \sigma_{x}}=R_{x}(2 \epsilon)$
$R_{x^{1}}(2 \epsilon)|\Psi\rangle \cong|\Psi\rangle-i \epsilon \sigma_{x}^{1}|P s i\rangle \equiv\left|\Psi^{\prime}\right\rangle$
The fidelity is $F=\sqrt{\left|\left\langle\Psi \mid \Psi^{\prime}\right\rangle\right|^{2}} \cong 1-\epsilon$
Syndrome measurement collapses error into either I or σ_{x}^{1}
$F(R(\varepsilon(\rho)),|\Psi\rangle) \cong ? \cong 1-\epsilon^{2}$
Example: The Phase Flip Code
$\varepsilon_{\text {phaseflip }}(\rho)=(1-P) \rho+P \sigma_{z} \rho \sigma_{z}$
Recall $H \sigma_{x} H=\sigma_{z}, H \sigma_{z} H=\sigma_{x}$
So, $H \varepsilon_{\text {phaseflip }}(H \rho H) H=\varepsilon_{\text {bitflip }}$
Explicitly,

For the bit flip: $U_{o}=\sigma_{z} \sigma_{z} I$ and $U_{1}=I \sigma_{z} \sigma_{z}$
For the phase flip: $U_{o}=\sigma_{x} \sigma_{x} I$ and $U_{1}=I \sigma_{x} \sigma_{x}$
Claim:
arbitrary errors can be described as σ_{x}, σ_{z}, and $\sigma_{x} \sigma_{z}$ errors
Proof Argument:
$\varepsilon(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}$
where we are guaranteed $\sum_{k} E_{k} E_{k}^{\dagger}=I$
Recall pauli matrices $\sigma_{j}=I, \sigma_{x}, \sigma_{y}, \sigma_{z}$, and that $\sigma_{y}=-i \sigma_{x} \sigma_{z}$
Since σ_{j} is a basis for all 2 x 2 hermitian matrices, let $E_{k}=\sum_{j} C_{k_{j}} \sigma_{j}$.

Then, $\varepsilon(\rho)=\sum_{k j j^{\prime}} C_{k_{j}} C_{k_{j^{\prime}}}^{*} \sigma_{j} \rho \sigma_{j^{\prime}}$
$\varepsilon(\rho) \sum_{j j^{\prime}} \chi_{j j^{\prime}} \sigma_{j} \rho \sigma_{j^{\prime}}$
is the "Chi representation or OSR"
Example: recall
$R_{x}(2 \epsilon)|\Psi\rangle \cong|P s i\rangle-i \epsilon \sigma_{x}|P s i\rangle$
$\varepsilon(\rho)=\rho-i \epsilon \sigma_{x} \rho-i \epsilon \rho \sigma_{x}+\epsilon^{2} \sigma_{x} \rho \sigma_{x}$
The $-i \epsilon \sigma_{x} \rho-i \epsilon \rho \sigma_{x}$ term disappears in the syndrome measurement, and the $\rho+\epsilon^{2} \sigma_{x} \rho \sigma_{x}$ term remains.

The result is that the syndrome measurement projects the environment into a definite error state.

4. SHOR 9 QUBIT CODE

$\left|0_{L}\right\rangle=(|000\rangle+|111\rangle)^{\otimes 3} / \sqrt{8}$
$\left|1_{L}\right\rangle=(|000\rangle-|111\rangle)^{\otimes 3} / \sqrt{8}$
this code will correct ANY single qubit error.
Syndrome Measurements:
for a bit flip: $\sigma_{z}^{1} \sigma_{z}^{2}, \sigma_{z}^{2} \sigma_{z}^{3}, \sigma_{z}^{4} \sigma_{z}^{5}, \sigma_{z}^{5} \sigma_{z}^{6}, \sigma_{z}^{7} \sigma_{z}^{8}, \sigma_{z}^{8} \sigma_{z}^{9}$
for a phase flip: $\sigma_{x}^{1} \sigma_{x}^{2}, \sigma_{x}^{3} \sigma_{x}^{4}, \sigma_{x}^{4} \sigma_{x}^{5}, \sigma_{x}^{5} \sigma_{x}^{6}, \sigma_{x}^{6} \sigma_{x}^{7}, \sigma_{x}^{8} \sigma_{x}^{9}$,

5. QEC CRITERIA/CONDITIONS

Channel: $E(\rho)=\sum_{k} E_{k} \rho E_{k}^{\dagger}$
Thm: Let C be a quantum Code defined by the orthonormal states $\left\{\left|\Psi_{l}\right\rangle\right\}$
\exists a quantum recovery operation R correction ε on C iff:

1. Orthogonality:
if I have 2 errors j and k ,
$\left\langle\Psi_{l}\right| E_{j}^{\dagger} E_{k}\left|\Psi_{l}\right\rangle=0$
2. Nondeformation criteria:
$\left\langle\Psi_{l}\right| E_{k}^{\dagger} E_{k}\left|\Psi_{l}\right\rangle=d_{k} \forall l$
this is so you cannot distinguish shrinking on different code words, all shrinking is the same.

note that d_{k} implies probability loss, but not information loss, $\sum_{k} d_{k}=1$ since $\sum_{k} E_{k}^{\dagger} E_{k}=1$

Proof: (\rightarrow)
Let $P=\sum_{l}\left|\Psi_{l}\right\rangle\left\langle\Psi_{l}\right|$ (project onto C)
note $P E_{j}^{\dagger} E_{k} P=d_{k} \delta_{j k} P\left({ }^{*}\right)$
note by Polar decomposition (extracting rotation and shrinkage) $E_{k} P=U_{k} \sqrt{P E_{k}^{\dagger} E_{k} P}=$ $\sqrt{d_{k}} U_{k} P$ where $\sqrt{d_{k}}$ is the shrinkage and $U_{k} P$ is the rotation.

1. Syndrome measurement:
let $P_{k}=U_{k} P U_{k}^{\dagger}=\frac{E_{k} P U_{k}^{\dagger}}{\sqrt{d_{k}}}=\frac{U_{k} P E_{k}^{\dagger}}{\sqrt{d_{k}}}$
By $\left({ }^{*}\right)$, the P_{k} S are orthogonal:
$\forall k \neq j, P_{k} P_{j} \propto U_{k} P E_{k}^{\dagger} E_{j} P U_{j}^{\dagger}=0$
measure P_{k} output k syndrome.
2. Apply Recovery R
$R(\rho)=\sum_{k} U_{k}^{\dagger} P_{k} \rho P_{k} U_{k}$
note for $|\Psi\rangle \in C$,
$U_{k}^{\dagger} P_{k} E_{j}|\Psi\rangle=\frac{U_{k}^{\dagger} U_{k} P E_{k}^{\dagger}}{\sqrt{d_{k}}} E_{j} P|\Psi\rangle=\frac{\delta_{j k} d_{k} P}{\sqrt{d_{k}}}|\Psi\rangle=\sqrt{d_{k}} \delta_{j k}|\Psi\rangle$
Thus:
$R\left(\varepsilon(|\Psi\rangle\langle\Psi|)=R\left(\sum_{j} E_{j}|\Psi\rangle\langle\Psi| E_{j}^{T}\right)=\sum_{j k} U_{k}^{\dagger} P_{k} E_{j}^{\dagger} P_{k} U_{k}=\sum_{j k} d_{k} \delta_{j k} P=|\Psi\rangle\langle\Psi|\right.$
