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Problem 1: (Review)

(a) The Pauli matrices

1 0 01 0 —1
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have eigenvalues £1. The corresponding eigenvectors are
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The density matrix of a single qubit can be expressed as
(14-7-0) /2 with |77| < 1. We can plot 77 on a Bloch sphere.

The eigenvectors of the Pauli matrices correspond to n = & \

[£1,0,0],[0,+£1,0] and [0, 0, 1], respectively.

(b) The action of a CNOT on p = ) c;i |j) (k| is

€00,00 = €00,00, €00,01 — €00,01, C00,10 = Co1,11, C00,11 = €00,10,
C01,00 — €01,00, Co1,01 — Co1,01, Co1,10 — Co1,11, Co1,11 — Co1,10,
€10,00 — €11,00, 10,01 — C11,01, C10,10 — C11,11, C10,11 — C11,10;
C11,00 — €10,00; C11,01 — €10,01, C11,10 — €10,11; C11,11 — €C10,10-

It looks much simpler when we realize we can write it as p — UpUT with

1000
0100
U=100 01
0010

only C-PHASE and Hadamards.

(c¢) This circuit produces (]00)+|11))/+/2 from |00) using .
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(d) The encoding circuit for Shor’s 9-qubit code is depicted above.

(e) Take the matrix for cNOT from (b), write out matrices

0100 1 0 0 0

1000 0 -1 0 0
X1_0001’Zl_0010’

(00 1 0| 0 0 0 —1 | )

[0 0 1 0] (1 0 0 0]

0001 0 1 0 0
X2_1000’ZQ_00—10’

| 010 0| 0 0 0 —1 |

do a little algebra, and obtain

UXU =X 1Xo, UXoU =Xy, ULU=2,, UZU =2 2.

(f) Let us rewrite R, (#) = Icos £ —iY sin £ and Rx(#) = Icos & —iX sin£. A rotation
about the z-axis can be constructed by rotating by 7/2 about z, rotating by ¢ about
y, and then rotating back 7/2 about z. Alternatively,

Ry(—m) Ry () Ry () — %(]H iX) (Hcosg Y sin g) %(}1 —iX)
_ ]Icosg _ @%(H LX)V (I +iX) sing — R.(),

recalling that [X,Y] = 2iZ.



Problem 2: (Open Systems and the Operator Sum Representation)

(a) Let {E;} be the set of operation elements for £ and Wy, = tr (E;Ek> It is
straighforward to see that Wjj is hermitian. Write

(W), = Wiy =t (BLE;) = (BLE)) = (BLE})") = tr (1B ) = (W),

Let us now look at the rows of the matrix W:

tr (Bl E, tr (ElE,) ... t(EE,
tr E;E1 tr E;E2 ... tr(ElE,
W = .
T
(EdQHE1> (EdQHEQ) (EdQHE>

The basis for the space of complex d x d matrices has d? elements. Therefore there
can be only d? linearly independent matrices Ey. Let us reorder the matrices {Ey} in
such a way that the linearly independent ones come first. After this, we are assured

that £, = Zg; can By for all @ > d?. Using the additivity of the trace, we see that
all of the rows of W below d? are then linearly dependent on the rows above them.
Therefore the rank of W is at most d?.

Because W is Hermitian with rank at most d?, there is a unitary matrix u that
transforms W into a diagonal matrix ulWu! with at most d? nonzero entries. We can
rewrite the elements of the matrix uWu' as

w05 = (uWuT) = Ujtr (E Eb) T =tr ((ufaEa)T (u;bEb)> )

This suggests that maybe we could use u}, £} as the new operation elements. Let us
then define a new set of at most d? operation elements

Let us check and see that they equivalently express our original quantum operation:
2 BeF) = 2.2 () p () = 3 (u'). (BuoE)
r ,
- Z i (EwpEY) Z EypEy = &(p).
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(b) We have two sets of operation elements:

aefh ] me[d 4]

and

B=valy V] m=vima|f )]

where a = (1 + /1 — \)/2. It is straightforward to check that both operations have
the same action on a general p. Let us then just give the transformation Ej = uy F),
obtained by simple algebra, using A = 4a(1 — a).

U_{ va M}_l VIHVi—X V1i-vVi—2X
Tl Vica -va VI-Viox —VI+vioa |

V2

(c) We are looking for a quantum operation that outputs
the completely mixed state /2, no matter what the input
state p was. It takes the Bloch sphere as an input and

shrinks it onto its center. We know from (a) that only .
four operation elements are needed. It turns out that this T
operation can be composed from simple rotations. Start J

with any point n; on the Bloch sphere and rotate it by = Sk ’

about one of the axes, obtaining 753 4. The sum of these p
four vectors is zero, so we arrive at 1/2 no matter what

the starting point was. This is a graphic interpretation

of the quantum operation

1
E(p) = Z_I(HP]I + XpX +YpY + ZpZ) =1/2

with operation elements F; = %ak. This operation can be also viewed as a simple
one-time pad encryption of a single qubit. One can choose to employ one of the four
operations {I, XY, Z} with equal probability. An eavesdropper would then see an
encoded state £(p) = I/2, which does not hold any information about the encrypted
input state p.

Problem 3: (Two-bit Amplitude Damping Code)

(a) For an input state |¢) = a |0) + b|1) we have

B-ly rea| B=|y i) e-gtawn-g %]
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to make things simpler, we take a and b to be real. The fidelity of p state with respect
to v is

F 0.0 = VITATT = (Jat+a (142T=7) + 4101 - 7),

1

Specifically for |) = (|0) + [1)) /v/2,

F(|¢1>,p1)=%\/1+\/1—7. 051

We plot this as a function of time for v =
l—e 7. It asymptotically aproaches 1/v/2.

o T 5
(b) When we rewrite F using z = a* = 1 — b?, we obtain

F(x):\/Qg:? (1—7— 1—7)+x<37—2+2ﬁ)+(1—7).

1

For 0 < v < 1and 0 < 2 < 1 this is
an increasing function, which gives the ex-
pected result that the state with = = 0,
i.e. [19) = |1) has the lowest fidelity at all
times for the amplitude damping channel.
The lower bound on fidelity at all times
(take x = 0) is then

sz’rL(t) =V 1_726_%'

o T 5T

(c) Let us now use two qubit input states with |¢) = a|01) 4+ b|10). The output of
the amplitude damping channel on this two-qubit state is

po= ()= Y, (E®E) W)Yl (B E)

J,k={0,1}
Y 0 0 0
_ 2 _
= o BT BT = o0y 001+ (1= ) o) .
0 0 00



(d) The fidelity of p" with respect to v is simply

F(p,[0) =v/1—y=er,

which is the same result as we had in (b), and thus the same plot.

(e) If we project p’ into the space orthogonal to |00), we obtain the original state |¢)!
However, this comes with a cost, the probability of obtaining a successful projection
onto the space OG to |00) is (1 —+). This relates well to the meaning of fidelity, which
for mixtures of orthogonal states p = p, |a) (a| + ps |B) (8| gives F (p,|B)) = /D5

Problem 4: (CSS and the T7-qubit Steane Code)

(a) The 16 codewords are the columns of the matrix G'J;5, where Jj5 is a matrix with
binary expressions for 0 to 15 as columns.

1000
8(1)(1)8 00000O0OO0OO0OCT1TT1T1111T1°1
ar- = 10001 000011110000T1T1T1:1
1= 0111 00110011001100T1°71
L o011 0101010101010T10°1
110 1]
0000000001 111111 1]
00001111000O0T1T1T1°1
00110011001100T1°1
= 1010101010101010°1
01 1010010110100 °1
01 1001101001100 1
(01 0110101010010 1]

(b) The way we constructed the codewords, it is clear that it is enough to check
HG =0 for Hx = HGJi5 = 0 to be true. The matrix H checks the parity of bits
4567, 2367 and 1357.

0001111
H=]10110011
1010101

(c) We know that H(x + e) = He, because Hx = 0 for codewords x. When a single
error occurs, the error e is a vector with one nonzero entry, thus He is a column
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of H. Now H is a Hamming code check matrix, constructed in such a way that its
columns hy, are binary representations for k, i.e. the fifth column of H is hs = [101]7.
Therefore H(z + e¢) = He tells us which bit to flip to correct the error e.

(d) It is clear that the distance of the code is d(C') < 3, because the second and the last
codeword have Hamming distance 3. If you flip the first three bits of a codeword, you
can convince yourself that H doesn’t “see” it. Nevertheless, the distance is d(C') = 3,
because if you flip any two bits of a codeword, the check matrix H would detect it
(no two columns of H are linearly dependent).

(e) Let us take the code C*+ with G’ = HT and H' = G*. This code encodes k = 3
bits into n = 7 bits. Its codewords are

001
010
01 1|[000011T11
GJ; = |100[][00110071°1
101010101071
110
111
(0101010 1]
00110011
01100110
= 00000111
01011010
00111100
01101001 |

All these can be found in the codebook for C'. Another way to see that O+ € C is to
realize checking the codewords g, of C+ with H gives zero, because Hy, = HG'e;, =
HHTe;, = 0, because one can check that HHT = 0.

(f) Every codeword y; € C' (a column vector) can be expressed as yp = Gey, where
er is the binary representation of k.

z-y, =2 Gep = (GTx) ey, = aley.

Recall that G7 is the check matrix for the code C*+. Therefore if x € C*, we have
a=GTzr=0,s0x- -y, =0 for any y;, € C. Thus

Z(_l)”"'y = Zl = |C|, forze Ct.

yeC yeC



On the other hand, if z ¢ C*, a = GTx is nonzero, and the sum can be expressed as

Z(_l)z~y — Z (=)' =0, forz¢ C*.

yeC er€{0,1}m

(g) The size of C*+ is 8. Using

() z+y),

yeCl

and the codewords for C' and C+ we obtain

5(0000000)) — L (10000000) +[1010101) + 0110011) + [1100110)
~ /8 \+]0001111) + |1011010) + [0111100) + |1101001)
W)y — L (111110 +[0101010) + [1001100) + [0011001)
~ /8 \+1110000) + |0100101) + [1000011) + [0010110)

(h) If a phase error e, occurs, |z + y) is mapped onto (—1)@*¥)€2 |z 4 4). Next, after
a bit error e; we obtain

S (D)EE |y e

1
/(YL

What would happen though, if the bit-flip error happened first? We would obtain

|¢b+p er1> -

wty) T Jrtyte) B (FL)EIR Iz 4y te).

This would give us

|¢p+b er1> - (_ 61 L Z x+y)-62 |l’ + Yy + €1> )

yECl

which is the previous result, just with an overall phase ¢ = (—1)“2. This is +1 for all
bit-flips and phase-flips only, and it is —1 if both a bit-flip and a phase-flip occurred
on a qubit, with the bit-flip coming first. This phase is obviously insignificant for
logical qubits. However, can this overall —1 spoil things when we are computing on
superpositions of encoded states, like [01), [11), — 1), ]0z), and an error occurs on
the first qubit of the first encoded state? No, because both states |0.), and |1.),
will acquire the extra phase ¢, because the phase does not depend on x or y in the
codewords, but rather only on the error that occurred. Therefore this overall +1 does
not matter, and we can freely write

D)THe |z 4y +eq).

|1/}b+p er1> = \/|C'_L Z

yeC+



(i) This is how you compute |z)|000) — |z) |Hzx). From (c) we see that |Hz) is the
bit representation of the flipped bit. We can now measure |Hz) to obtain e; and flip
the errorneous bit back to get

’wp er1> == x+y)‘82 ’33 + y> .

Jem 2

(j) Applying Hadamards to each qubit of
[p e Z e |z + )
yECJ-
and using the result of (f), we obtain

1
H [y ) = e > Y (e

2€{0,1}" yeCL

— \/|C’_i Z Z Y 4 ey)

2'€{0,1}" yeCt

— Z Z(— Y@ ey

2’eCt yeCt

If we now use the check matrix for code C*, i.e. GT, we obtain the binary expression
for error e;. We flip the bit and perform H®" again to obtain the error corrected
original state [¢(z)).



