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Problem 1: (Review) 

(a) The Pauli matrices 

1 0	 0 1 
σz = Z = , σx = X = , σy = Y =

0 −i 
1 0	 i 00 −1 

have eigenvalues ±1. The corresponding eigenvectors are 

1 1	 1 
y+� √1

2 
z+ =

0 
, x+� = 1 , = 

i
,| � | √

2 1 
|

0 1 1	 11=
1 

, |x−� = √
2 −1 

, = √
2 −i .|z−� |y−�

The density matrix of a single qubit can be expressed as 
(1+~n ~σ)/2 with ~n ≤ 1. We can plot ~n on a Bloch sphere. · | |
The eigenvectors of the Pauli matrices correspond to ~n = 
[±1, 0, 0], [0, ±1, 0] and [0, 0, ±1], respectively. � 

� 

� 

(b) The action of a cnot on ρ = cjk |j� �k| is 

c00,00 → c00,00, c00,01 → c00,01, c00,10 → c01,11, c00,11 → c00,10, 
c01,00 → c01,00, c01,01 → c01,01, c01,10 → c01,11, c01,11 → c01,10, 
c10,00 → c11,00, c10,01 → c11,01, c10,10 → c11,11, c10,11 → c11,10, 
c11,00 → c10,00, c11,01 → c10,01, c11,10 → c10,11, c11,11 → c10,10. 

It looks much simpler when we realize we can write it as ρ U ρU † with → 
  

1 0 0 0 
	 0 1 0 0 

 U	= . 
	 0 0 0 1  

0 0 1 0 

(c) This circuit produces ( 00�+ 11�)/
√

2 from 00� using | |	 |
only c-phase and Hadamards. 
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(d) The encoding circuit for Shor’s 9-qubit code is depicted above. 

(e) Take the matrix for cnot from (b), write out matrices 

  	  

0 1 0 0	 1 0 0 0 
 	  

X1 = 
	 1 0 0 0 

 Z1 =  

0 −1 0 0 
	  

 0 0 0 1  

, 
 0 0 1 0  

, 

0 0 1 0 0 0 0 −1 
  	  (1) 

0 0 1 0	 1 0 0 0 
 0 0 0 1   0 1 0 0 

  	 X2 = 
	 1 0 0 0  

, Z2 = 
 0 0 −1 0  

, 

0 1 0 0 0 0 0 −1 

do a little algebra, and obtain 

U X1U = X1X2, U X2U = X2, U Z1U = Z1, U Z2U = Z1Z2. 

θ θ(f) Let us rewrite Ry(θ) = I cos 
2 
−iY sin θ and RX(θ) = I cos 

2 
−iX sin θ . A rotation 

2	 2 

about the z-axis can be constructed by rotating by π/2 about x, rotating by θ about 
y, and then rotating back π/2 about x. Alternatively, 

1	 θ θ 1 
RX(−π)RY (θ)RX(π) = (I + iX) I cos

2 
− iY sin (I − iX)

2 
√

2
θ 1 θ 

√
2

= I cos
2 
− i (I − iX)Y (I + iX) sin = Rz(θ),

2	 2 

recalling that [X, Y ] = 2iZ. 
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Problem 2: (Open Systems and the Operator Sum Representation) 

(a) Let {Ej} be the set of operation elements for E and Wjk = tr Ej
†Ek . It is 

straighforward to see that Wjk is hermitian. Write 

∗ 
W † = W ∗ = tr E†Ej = tr ET Ej 

∗ = tr (ET Ej 
∗)T = tr Ej

†Ek = (W )jk . jk kj k k k 

Let us now look at the rows of the matrix W : 
 

� � � � � � 

 

tr E†
1E1 tr E†

1E2 . . . tr E†
1Em 

 
� � � � � � 

 

 

 

tr E†
2E1 tr E†

2E2 . . . tr E†
2Em 

 

 

  

W =  

. . . 
. . . 

. . . 
. . . 

 . 
  

� � � � � � 

  

 tr E†
d2+1E1 tr E†

d2+1E2 . . . tr E†
d2+1Em 

 

  

. . . . . . . . . . . . 

The basis for the space of complex d × d matrices has d2 elements. Therefore there 
can be only d2 linearly independent matrices Ek. Let us reorder the matrices {Ek} in 
such a way that the linearly independent ones come first. After this, we are assured 

�d2 

that Ea = b=1 cabEb for all a > d2 . Using the additivity of the trace, we see that 
all of the rows of W below d2 are then linearly dependent on the rows above them. 
Therefore the rank of W is at most d2 . 

Because W is Hermitian with rank at most d2, there is a unitary matrix u that 
transforms W into a diagonal matrix uWu† with at most d2 nonzero entries. We can 
rewrite the elements of the matrix uWu† as 

wiδij = uWu† 
ij 

= uiatr Ea
†Eb u

∗ = tr (u∗ Ea)
† u∗ .jb ia jbEb 

This suggests that maybe we could use u∗ Eb as the new operation elements. Let us jb

then define a new set of at most d2 operation elements 

Fj = u∗ Eb.jb

Let us check and see that they equivalently express our original quantum operation: 

FjρFj
† = u∗ jbEb ρ ujcEc

† = u†u EbρEc
†

bc 

j j b,c b,c 

= δbc EbρEc
† = EbρE

† = E(ρ).b 

b,c b 
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(b) We have two sets of operation elements: 

1 0 0 0 
E0 = 0 

√
1 − λ

, E1 = 0 
√
λ 

, 

and 

1 0 ˜ 1 0
Ẽ0 = 

√
α 

0 1 
, E1 = 

√
1 − α 

0 −1 
, 

where α = (1 + 
√

1 − λ)/2. It is straightforward to check that both operations have 
˜the same action on a general ρ. Let us then just give the transformation Ek = ukl El, 

obtained by simple algebra, using λ = 4a(1 − a). 

√
α 

√
1 − α 1 1 + 

√
1 − λ 1 −

√
1 − λ √

1 − α −√
α 

√
2 1 −

√
1 − λ − 1 + 

√
1 − λ 

u = = 

(c) We are looking for a quantum operation that outputs 
the completely mixed state I/2, no matter what the input 
state ρ was. It takes the Bloch sphere as an input and 
shrinks it onto its center. We know from (a) that only 
four operation elements are needed. It turns out that this 
operation can be composed from simple rotations. Start 
with any point n~1 on the Bloch sphere and rotate it by π 
about one of the axes, obtaining ~n2,3,4. The sum of these 
four vectors is zero, so we arrive at I/2 no matter what 
the starting point was. This is a graphic interpretation 
of the quantum operation 

� 

� 

� 

1
E(ρ)
 = (IρI + XρX + Y ρY + ZρZ) = I/2 
4

1with operation elements Ek = 
4 
σk. This operation can be also viewed as a simple 

one-time pad encryption of a single qubit. One can choose to employ one of the four 
operations {I, X, Y, Z} with equal probability. An eavesdropper would then see an 
encoded state E(ρ) = I/2, which does not hold any information about the encrypted 
input state ρ. 

Problem 3: (Two-bit Amplitude Damping Code) 

(a) For an input state ψ� = a 0 + b 1� we have 

21 0 0 
√
γ a ab 

E0 = 0 
√

1 − γ
, E1 = 0 0 

, ρ = E (|ψ� �ψ|) = 
ab b2 

, 
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to make things simpler, we take a and b to be real. The fidelity of ρ state with respect 
to ψ is 

F ( ψ� , ρ) = = a4 + a2b2 γ + 2 1 − γ + b4(1 − γ).| �ψ| ρ |ψ� 

Specifically for ψ1� = ( 0� + 1�) /
√

2, | | |

1 � 

F ( ψ1� , ρ1) = 1 +	 1 − γ. | √
2 

We plot this as a function of time for γ = 
t 

T . It asymptotically aproaches 1/
√

2. 1−e− 

� 5� 

0.5 

1 

0 

(b) When we rewrite F using x = a2 = 1 − b2, we obtain 

F (x) = 2x2 1 − γ − 1 − γ + x 3γ − 2 + 2 1 − γ + (1 − γ). 

For 0	 ≤ 1 and 0 ≤ x ≤ 1 this is γ ≤
an increasing function, which gives the ex
pected result that the state with x = 0, 
i.e. ψ2� = 1 has the lowest fidelity at all 
times for the amplitude damping channel. 
The lower bound on fidelity at all times 
(take x = 0) is then 

t 

Fmin(t) = 1 − γ = e− 2T . 

0.5 

1 

0 � 5� 

(c) Let us now use two qubit input states with ψ� = a 01� + b 10�. The output of | | |
the amplitude damping channel on this two-qubit state is 

ρ′ = E( ψ ) = (Ej ⊗ Ek) (Ej ⊗ Ek)
†| �	 |ψ� �ψ|

j,k={0,1}
	  

γ 0 0 0 
 0 (1 − γ)a2 (1 − γ)ab 0 
 = γ 00 �00 + (1 − γ)= 

	 0 (1 − γ)ab (1 − γ)b2 0  

| � | |ψ� �ψ| . 
0 0 0 0 
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(d) The fidelity of ρ′ with respect to ψ is simply 

t 

2T ,F (ρ′ , ψ�) = 1 − γ = e−|

which is the same result as we had in (b), and thus the same plot. 

(e) If we project ρ′ into the space orthogonal to 00 , we obtain the original state ψ�! 
However, this comes with a cost, the probability of obtaining a successful projection 
onto the space OG to 00� is (1−γ). This relates well to the meaning of fidelity, which |
for mixtures of orthogonal states ρ = pα α �α + pβ β� �β| gives F (ρ, β�) = 

√
pβ. 

Problem 4: (CSS and the 7-qubit Steane Code) 

(a) The 16 codewords are the columns of the matrix GJ15, where J15 is a matrix with 
binary expressions for 0 to 15 as columns. 

  

1 0 0 0 
	 0 1 0 0   

  0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
	 0 0 1 0 

  0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
	 GJ15 =  0 0 0 1 

  0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1  

	 0 1 1 1 
  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
	 1 0 1 1 


1 1 0 1

	  

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
	 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

	  

	 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
	  

=  0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . 
	  

	 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 
	  

	 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1  

0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 

(b) The way we constructed the codewords, it is clear that it is enough to check 
HG = 0 for Hx = HGJ15 = 0 to be true. The matrix H checks the parity of bits 
4567, 2367 and 1357. 

	  

0 0 0 1 1 1 1 
H =  0 1 1 0 0 1 1  . 

1 0 1 0 1 0 1 

(c) We know that H(x + e) = He, because Hx = 0 for codewords x. When a single 
error occurs, the error e is a vector with one nonzero entry, thus He is a column 
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of H. Now H is a Hamming code check matrix, constructed in such a way that its 
columns hk are binary representations for k, i.e. the fifth column of H is h5 = [1 0 1]T . 
Therefore H(x + e) = He tells us which bit to flip to correct the error e. 

(d) It is clear that the distance of the code is d(C) ≤ 3, because the second and the last 
codeword have Hamming distance 3. If you flip the first three bits of a codeword, you 
can convince yourself that H doesn’t “see” it. Nevertheless, the distance is d(C) = 3, 
because if you flip any two bits of a codeword, the check matrix H would detect it 
(no two columns of H are linearly dependent). 

(e) Let us take the code C⊥ with G′ = HT and H ′ = GT . This code encodes k = 3 
bits into n = 7 bits. Its codewords are 

  

0 0 1 
 0 1 0  

  	  

	 0 1 1  0 0 0 0 1 1 1 1 
  

G′J7 =  1 0 0  0 0 1 1 0 0 1 1  

  

	 1 0 1  0 1 0 1 0 1 0 1 
  

	 1 1 0  

1 1 1 
	  

0 1 0 1 0 1 0 1 
 0 0 1 1 0 0 1 1  

	  

	 0 1 1 0 0 1 1 0 
	  

=  0 0 0 0 0 1 1 1 . 
	  

	 0 1 0 1 1 0 1 0 
	  

	 0 0 1 1 1 1 0 0  

0 1 1 0 1 0 0 1 

All these can be found in the codebook for C. Another way to see that C⊥ ∈ C is to 
realize checking the codewords yk of C⊥ with H gives zero, because Hyk = HG′ek = 
HHT ek = 0, because one can check that HHT = 0. 

(f) Every codeword yk ∈ C (a column vector) can be expressed as yk = Gek, where 
ek is the binary representation of k. 

x · yk = x T Gek = (GT x)T ek = αT ek. 

Recall that GT is the check matrix for the code C⊥. Therefore if x ∈ C⊥, we have 
α = GT x = 0, so x = 0 for any yk ∈ C. Thus · yk 

(−1)x·y = 1 = C , for x ∈ C⊥.|	 |
y∈C y∈C 
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On the other hand, if x / ⊥, α = GT x is nonzero, and the sum can be expressed as ∈ C

(−1)x·y = (−1)αT ek = 0, for x / ⊥.∈ C
y∈C ek ∈{0,1}n 

(g) The size of C⊥ is 8. Using 

1 
ψ(x)� = � x+ y� ,|

|C⊥|
y∈C⊥ 

|

and the codewords for C and C⊥ we obtain 

1 0000000 + 1010101� + 0110011� + 1100110�
ψ(0000000)� =| √

8 + 
|
0001111 + 

|
1011010� + 

|
0111100� + 

|
1101001� 

1 1111111 + 0101010� + 1001100� + 0011001�
ψ(1111111)� =| √

8 + 
|
1110000 + 

|
0100101� + 

|
1000011� + 

|
0010110� 

(h) If a phase error e2 occurs, x+ y is mapped onto (−1)(x+y)· x+ y�. Next, after | � e2 |
a bit error e1 we obtain 

1 e2|ψb+p err� = � (−1)(x+y)· x+ y + e1 . 
|C⊥|

y∈C⊥ 

| �

What would happen though, if the bit-flip error happened first? We would obtain 

e1 e2 e2x+ y → |x+ y + e1� − (−1)(x+y+e1)· x+ y + e1� .| � − → |

This would give us 

1 e2|ψp+b err = (−1)e1·
� (−1)(x+y)· x+ y + e1� ,|� e2 

|C⊥|
y∈C⊥ 

e2which is the previous result, just with an overall phase φ = (−1)e1· . This is +1 for all 
bit-flips and phase-flips only, and it is −1 if both a bit-flip and a phase-flip occurred 
on a qubit, with the bit-flip coming first. This phase is obviously insignificant for 
logical qubits. However, can this overall −1 spoil things when we are computing on 
superpositions of encoded states, like 0L�1 1L�2 − 1L�1 0L�2 and an error occurs on | | | |
the first qubit of the first encoded state? No, because both states 0L 1 and 1L�1 
will acquire the extra phase φ, because the phase does not depend on x or y in the 
codewords, but rather only on the error that occurred. Therefore this overall ±1 does 
not matter, and we can freely write 

1 e2|ψb+p err� = � (−1)(x+y)· x+ y + e1 . 
|C⊥|

y∈C⊥ 

| �
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(i) This is how you compute x� |000 x� Hx�. From (c) we see that Hx is the | � → | | | �
bit representation of the flipped bit. We can now measure Hx� to obtain e1 and flip |
the errorneous bit back to get 

1 e2|ψp err� = � (−1)(x+y)· x + y� . 
|C⊥|

y∈C⊥ 

|

(j) Applying Hadamards to each qubit of 

1 e2|ψp err� = � (−1)(x+y)· x + y�
|C⊥|

y∈C⊥ 

|

and using the result of (f), we obtain 

1 
H⊗n |ψp err� = � 

|C⊥|
z∈{0,1}n 

(−1)(x+y)·(e2+z) |z� 
y∈C⊥ 

1 ′ z = � (−1)(x+y)· z′ + e2�
′ z

|C⊥| ∈{0,1}n y∈C⊥ 

|

′ z = (−1)(x+y)· z′ + e2� .|
′ z ∈C⊥ y∈C⊥ 

If we now use the check matrix for code C⊥, i.e. GT , we obtain the binary expression 
for error e2. We flip the bit and perform H⊗n again to obtain the error corrected 
original state ψ(x)�.|
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