
| 〉 | 〉 | 〉

〈 〉

〉

〉 | 〉
〈 〉 〈 〉

〉 〈 〉

| 〉

� �
� � �

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics, EECS, and Department of Applied Math

6.443J/8.371J/18.409/MAS.865 Spring 2006

Quantum Information Science

Problem Set #2 Solutions
(due 02-Mar-06)

Problem 1: (Measurements and stabilizers)

(a) Let M be an n-qubit measurement operator described by a product of Pauli matrices. If it
commutes with all the generators, we have

giM ψ = Mgi ψ = M ψ .

Thus M ψ is in the subspace stabilized by S = g1, . . . , gn . This is possible only if M ψ = c ψ ,| 〉 〈 〉 | 〉 | 〉
and because M2 = 1, we can say that either M or −M is already in the stabilizer. If M was in
the stabilizer, the state is already in the +1 eigenstate of M and measuring M does not disturb the
state or the stabilizer. If −M was in the stabilizer, the state must have been in the −1 eigenstate
of M . Therefore in this case, after measuring M , the state remains in the −1 eigenstate of M , and
the stabilizer remains unchanged as well.

However, if M anticommutes with g1, . . . , gj and commutes with gk>j , the situation is differ
′ ′ ent. Let us multiply the generators g2, . . . , gj with g1, obtaining g = g1g2 and so on. S = 2

′ ′ g1, g 2, . . . , g j , gj+1, . . . , gn . Without loss of generality, we can thus write the stabilizer in such a
way that M anticommutes with the first generator, and commutes with the rest. After measuring
M and obtaining the result k = {0, 1}, the state is an eigenstate of M , stabilized by (−1)kM .
The generator g1 does not stabilize it anymore, and (−1)kM can not be constructed from the rest
of the generators (because then it would commute with g1), therefore the new stabilizer is now

′ ′ S = 〈(−1)kM, g 2 . . . , g j , gj+1, . . . , gn .

(b) The state stabilized by 〈XX,ZZ is 00 + 11 /
√

2. We want to measure IY . This anticommutes
with both XX and ZZ. Let us then write the stabilizer as S = XX, (XX)(ZZ) = XX,−Y Y .
After measuring IY and obtaining k = {0, 1}, the resulting stabilizer and state will be

IY,−Y Y = IY,−Y I , ψ0 = y+ , for k = 0,〈 〉 〈 〉 | 〉 |y−〉 | 〉
〈−IY,−Y Y = −IY, Y I , |ψ1〉 = |y+〉 |y−〉 , for k = 1.

(c) Let us start in 0〉. This state is stabilized by I ⊗ Z and one more unknown stabilizer |ψ〉 ⊗ |
generator. After measuring Y ⊗X, the state will be in an eigenstate of Y ⊗X. If it becomes a −1
eigenstate, we wish to do an operation to turn it into a +1 eigenstate of Y ⊗X. Let ψ− be a −1
eigenstate of Y ⊗X. Because the previous stabilizer element I ⊗ Z anticommutes with Y ⊗X, we
can use it for this purpose.

(Y ⊗X)(I ⊗ Z) �ψ− = −(I ⊗ Z)(Y ⊗X) �ψ− = +(I ⊗ Z) �ψ−
�

,

therefore applying I ⊗ Z after measuring −1 will steer the post-measurement state into the +1
eigenstate of Y ⊗X.

The second measurement is I⊗Y . We will now use the same trick, and correct the −1 eigenstate by
applying the element Y ⊗X from the previous stabilizer that anticommuted with the measurement
I ⊗ Y .

¯ ¯(d) For the state 0〉 we have normalizer operations X = XI and Z = ZI. These normalizer |ψ〉 ⊗ |
elements anticommute with the new stabilizer operation g1 = Y X. However, the old stabilizer

1

〈 〉

〉

| 〉 | | | 〉 〈 〉

element g0 = IZ also anticommutes with g1 = Y X. We can use it to make new normalizer elements
¯ ¯X1 = (XI)(IZ) = XZ and Z1 = (ZI)(IZ) = ZZ. This can be seen from

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯X† = g1, ¯(Xg0)g1(Xg0)
† = Xg0g1g †X† = −Xg1g0g †X† = −Xg1X† = g1X0 0

¯ ¯which means that X1 = Xg0 is a new normalizer element for stabilizer S1 = g1 .

¯ ¯Next we measure IY . This again anticommutes with both X1 and Z1, while we have thrown the
¯stabilizer element g1 = XY . This changes the operators into X2 = (XZ)(XY) = −iIX and

Z̄2 = (ZZ)(XY) = Y X.

(e) If we started in the state |ψ〉 ⊗ |0 + 1 /
√

2, it would be stabilized by I ⊗ X and some other
stabilizer generator P ⊗ I. However, this one will be important now, because the first measurement
Y ⊗X commutes with I ⊗X. If element P ⊗I also commuted with Y ⊗X, we would always measure
+1. However, if it did not commute with Y ⊗ X, we would need to use P ⊗ I for the correction.
The correction operator after the second measurement (i.e. I ⊗ Y) remains Y ⊗X.

Problem 2: (Passive error correction and decoherence free subspaces)

(a) The stabilizer for code with 0L = 000〉 and 1L〉 = 111 is S = ZZI, IZZ . We want to show
that errors E ∈ {XII, IXI, IIX} can be corrected with this code. Let us use the error-correction
conditions, and look at Ej Ek. The possibilities are EiEk ∈ {III,XXI, XIX, IXX}. We can see
that (XXI)(IZZ)(XXI) = −IZZ /∈ S, which means that XXI is not in the normalizer of S. Also
(XIX)(ZZI)(XIX) = ZZI and (IXX)(ZZI)(IXX) = ZZI. Therefore none of EiEk belong − −
to N(S) − S, and the set of errors E is correctable.

(b) By inspection, E1 = ZIZ does not cause any error on the codewords. Thus our code is a
decoherence free subspace (DFS) for the error E1.

(c) If all of errors Ei belong to the stablizer of C, then it is obvious that C is a DFS for the set of
errors Ei.

(d) All single qubit errors on any number of n bits can not belong to a single stabilizer, because
stabilizer elements commute with each other. However, Xk and Zk don’t.

(e) We have A = U1 = Y Y Y, U2 = ZZZ} and B = U1 = ZY X, U2 = Y ZI}. For set A, we { {
have U1U2 = (iX)(iX)(iX) = iXL, which is the logical X operation and multiplication by an −
unimportant phase. For set B, we have U1U2 = (−iX)(iX)(X) = XL.

(f) Let us assume the errors occur as U2E1U1. Because E1 = XII anticommutes with U2 for both
sets, we can write U2E1U1 = E1U2U1 = E1XL. The operation XL commutes with the code − −
stabilizer, therefore it does not change the stabilizer. We thus need to prove that the error −E1 is
correctable by code C. We see that (−E1)(−E1) = III ∈ S. The error-correction conditions then
state that −E1 is correctable for code C(S).

If the error is E1 = ZIZ, it commutes with U2 from set A, giving U2E1U1 = E1U2U1, making the
error E1 appear after applying XL. However, E1 belongs to the stabilizer of code C, and as such, is
“passively” corrected.

For the set B and error E1 = ZIZ, we have U2E1U1 = (ZY X)(ZIZ)(Y ZI) = −(ZIZ)(ZY X)(Y ZI) =
′ (−ZIZ)XL. This means that error ZIZ between U1 and U2 is equivalent to error E1 = −ZIZ after

2

| 〉 |

| 〉 | 〉

| 〉 | | 〉 | 〉

| 〉 |

| 〉 | | 〉

′ applying U2U1. When we multiply this new error E1 by the stabilizer element ZIZ, we see that it
is nothing but an overall minus sign, which is also harmless.

†)U U .2 12 Ē = U2EU
†
2 as the error. The (g) We can write U2EU1 = (U2EU We will then analyze

¯E†error correction condition tells us that E ¯ = U2EE
†U†

2 can not belong to N(S) − S for the error
†
1 EE

†U1.to be correctable. The same holds for U

(h) If a code C is a DFS for errors {Ej }, to keep the DFS condition for U2Ej U1 we need to have
U2Ej U1 ψ = dj ψ〉. This means that

†
2Ej U1 ψ = cj U1 ψ = dj U ψ〉 .|

†
2 =Because this should hold for all j, we require dj = cj , U U1 and that U1 belongs to the normalizer

′′′ of C, to keep U1 ψ = ψ 〉 in the code, and thus to have Ej ψ = cj ψ .

Problem 3: (Topological QEC: Projective Plane Codes)

(a) Our cellulation of ℜP 2 has 3 faces, 2 vertices and 4 edges. This gives stabilizers

AB = Z1Z2, B = X1X2X3X4.

AC = Z3Z4,

and a redundant AA = Z1Z2Z3Z4 = ABAC. We thus have a code on four qubits with three
stabilizers. This means the stabilized subspace is two-dimensional. What are the codewords? We
can find them by hand. The two-dimensional subspace for the first two qubits stabilized by Z1Z2

contains 00 and 11〉. The same holds for qubits 3 and 4. Requiring X1X2X3X4 to stabilize the
state of the four qubits, we find that

|ψ1〉 = 0000 + 1111 /
√

2 and ψ2〉 = 0011 + 1100 /
√

2

are stabilized by S = {AB, AC, B}.

(b) For the second cellulation, the stabilizers are

B1 = X1X2, B3 = X4X5, B5 = X7X8, AA = Z1Z2Z3Z7Z8Z9,
B2 = X2X3, B4 = X5X6, B6 = X8X9, AB = Z4Z5Z6Z7Z8Z9,

and AC = Z1Z2Z3Z4Z5Z6 = AAAB and B7 = X1X3X4X6X8X9 = B1B2B3B4B5B6 that are redun
dant, because they can be obtained by multiplying the stabilizers above. What are the codewords?

3

| 〉 |
| 〉 | 〉

+++〉 ±

�

| 〉

There are two of them, because we have 9 qubits and 8 stabilizers. It is a little more tricky to find
them this time, but it can be done by hand. Of course, if one realizes that the stabilizer generators
are almost the Shor code stabilizers, just with X Z. This means that the codewords will be the ↔
Shor code codewords, with states in the x-basis (i.e. + and −〉) exchanged for states in the z-basis
(i.e. 0 and 1) and vice versa.

1
� �⊗3

Shor 9-qubit code :
8
�

|000 111〉〉 ± |
�⊗31this code (dual to the Shor code) :

8
| |−−−〉

Let us also explain a simple numerical method of finding the codewords. For every element g of
the stabilizer, the states it stabilizes belong to the zero eigenspace of I − g. Let us then form a
matrix M = i(I − gi) and find its eigenvalues and eigenvectors. Note that all of the gi commute,
so we know they can be simultaneously diagonalized. The λ = 0 eigenspace of M is the stabilized
subspace. We find these codewords:

1 ⊗3 1 ⊗3
ψ1 =

8
|000 + 011 + 101 + 110 , ψ2〉 = 001 + 010 + 100 + 111〉 .〉 |

8
|

It is easy to check that we have found the codewords for the dual to the Shor 9-qubit code.

(c) The dual to the cellulations above is found by drawing an edge across every edge we had, and
connecting them to vertices inside the faces. This practically changes every Z in a stabilizer element
into an X, and vice versa. The dual cellulations for parts (a) and (b) are

4

The stabilizers for the dual code to the one of part (a) are

B1 = X1X2, B2 = X3X4, A = Z1Z2Z3Z4,

giving codewords

1 � � 1 � �

ψ1 = ++++〉 + and ψ2 = .−−++| 〉 √
2

| |−−−−〉 | 〉 √
2

|++−−〉 + | 〉

For the dual to part (b), we have the stabilizers for the Shor 9-qubit code,

AA = Z1Z2, AC = Z4Z5, AE = Z7Z8, B1 = X1X2X3X7X8X9,
AB = Z2Z3, AD = Z5Z6, AF = Z8Z9, B2 = X4X5X6X7X8X9.

(d) We will prove the following: if there is such a bad edge, the cellulation does not give us a set of
stabilizers. Note, that it is possible that a cellulation without such a “weird” edge could be bad as
well, the reader is invited to work out why the second depicted cellulation is not valid as well.

Let us concentrate on the “weird” edge. Note that anything can happen inside the shaded regions.
Because the special edge has the same face on both sides, one of the stabilizer operators will be
ZwZ1 . . . Zn where Z1 . . . Zn are all the edges that appear around the white face of the cellulation.
Another stabilizer operator from one of the vertices on the edge will be XwX1XnXgray inside. We
can already see that these two do not commute, because they contain three common Z’s and X’s.
Thus such a cellulation does not give a valid stabilizer code.

(e) There are many examples of a five-edge cellulation. What happens when you try to have only a
single vertex? We give an example that comes from the dual to (a) just by adding one more edge:

5

The stabilizers are

B1 = X1X2X3, AA = Z1Z3Z4,

B2 = X3X4X5, AB = Z2Z3Z5.

These give codewords (found using the numerical procedure described above)

1 1
ψ1 = 00000 + 00111 + 11011 + 11100 , ψ2〉 = 01001 + 10010 + 01110 + 10101〉 .| 〉

2
| 〉 |

2
|

Problem 4: (The Gottesman-Knill Theorem)

(a) Recall that

� � � �

H =
1 √
2

1
1

1
−1

and S =
1
0

0
i

.

We also know that S2 = Z, HZH = X and ZX = iY . Therefore by having H and S at our disposal,
we can apply any Pauli operation (up to a phase), and H and S as well. The action of H and S on
Pauli matrices is

H : {X → Z, Y → −Y,Z ,→ X}
S : {X → Y, Y → −X, Z .→ Z}

Any normalizer operation on the group G1 is simply a permutation of the three generator elements
{X, Y, Z}. How do we make any permutation? The first two elements, X and Y are effectively
switched by applying XS = HS2HS.

XS = HS2HS : {X → −Y, Y → −X, Z → −Z}.

We require the X to give an extra − sign to both Y and Z, so that we obtain an overall minus
phase, not just Y → −X. The first and third elements, X and Z are switched by applying iY H =
ZXH = S2HS2HH = S2HS2:

iY H = S2HS2 : {X → −Z, Y → −Y, Z → −X}.

This is all we need to conclude that any normalizer operation on a single qubit can be done by using
only H and S (up to an overall phase).

6

� �

� �

� � � � � � � �

| | 〉

〈 | | |

〈 | |

(b) We just proved that for a single qubit, we can apply a normalizer operation U just by using H
and S. When we can apply any n-qubit normalizer operation using only H and S, we want to show
that the circuit

′ ′ applies U , if U 0 U(ψ) and that this U is a normalizer operation we already know |ψ〉 ≡
√

2 〈 | |0〉⊗ | 〉
how to apply for n qubits.

First, the action of U . Let us rewrite it in block form (each block is n × n) as

′1 U a
U = √

2 b c
,

′ where U was defined above, and a, b and c need to be found. The first condition on U is UZ1U
† =

′ X1 ⊗ g, the second condition is UX1U
† = Z1 ⊗ g . Writing these (and the unitarity condition

UU† = I) and solving for a, b and c we obtain

′ ′1 U ′ g U
U = ′ ′ ′ .√

2 gU −gg U

It is now straightforward to verify that this exactly the action of the above circuit, that is

′ ′ U = (controlled-g)(H ⊗ I)(controlled-g)(I ⊗ U)
′

I 0 1 I I I 0 U 0
= ′ ′ .

0 g
√

2 I −I 0 g 0 U

Therefore we can apply any such normalizer operation U on n +1 qubits using only H, S and cnot

gates. The last comes from the fact that the controlled-g operation can be easily made from a cnot

sandwiched between some combination of H and S on the second qubit.

′ It can be easily shown that U is an unitary gate. However, for this construction to work, we need
′ to show that U is in the Normalizer. Let h ∈ Gn, φ〉 be an n qubit state. We then have, |

′ ′

U hU †(|φ〉) = 2 〈0 U(0 0 ⊗ h)U†(φ)| | 〉 〈 | |0〉 ⊗ | 〉
= 0 (I + X1 ⊗ g)U(I1 ⊗ h)U†(φ)〈 | |0〉 ⊗ | 〉

′ ′

Since U ∈ Nn+1, ∃σ ∈ G1, ∃h ∈ Gn such that U(I1 ⊗h)U† = σ ⊗h . We then have two possiblities.

1. Either σ ∈ [±I, ±iI, ±Z, ±iZ], then 〈0 σX1 0 = 0, and the second term disappears;

′ ′ ′

U hU † φ = 0 (σ ⊗ h)(φ| 〉 〈 |
′

|0〉 ⊗ | 〉
= 0 σ 0〉h φ〉 ,

′ ′ ′

Note that (0 σ 0〉) ∈ [±1, ±i] and (h) ∈ Gn. So in this case (U hU †) ∈ Gn.

7

〈 | | 〉

| | | 〉 | 〉

2. When (σ) ∈ [±X, ±iX, ±Y, ±iY]. Then 0 σ 0 = 0, the first term disappears. Then we have

′ ′ ′

U hU † φ〉 = 〈0 σX1 0 (gh) φ

′ ′ ′

It should be noted that (0 σX1 0) ∈ [±1, ±i] and (gh) ∈ Gn, so again we have (U hU †) ∈ Gn.

′

〈 | | 〉
This shows that U is in the Normalizer Gn.

Now we use the fact that we need at the most An2 number of cnot, Hadamard and phase gates
to create any element in the normalizer Nn. The operator G representing the controlled-g gate in
the given circuit may be expressed as G = σ1 ⊗ σ2 ⊗ σ3 ⊗ ... ⊗ σn, where σi are controlled Pauli
gates. Now we prove the circuit complexity of the given construction is O(n2). We prove this by

′ ′ induction. From the above it is clear that U requires O(n2) gates, the implmentation of g and g
′ requires O(n) gates each. We need a H gate between g and g gates to implement the U gate on n +1

qubits. Hence, the total number of gates required to implement U on n + 1 qubits is O(n2 + 2n + 1)
= O((n + 1)2) hadamard, phase and cnot gates. This completes the proof by induction.

(c) In the previous part of the problem we found that the specific type of U can be implemented in
O(n2) Hadamard, phase and cnot gates. Now any arbitrary normalizer operation U on n +1 qubits
can be implemented using the construction in the previous problem by additional gates that can
transform the elements X and Z to someother element in the Normalizer. The number of such gates
required are constant in number. Hence, the implementation of any gate U ∈ N (Gn+1) requires
O(n2) Hadamard, phase and cnot gates.

8

