
 JUST-IN-TIME PROGRAMMING | 1

Just-in-Time Programming

by

Richard Potter

Human Computer Interaction Lab

University of Maryland

Chapter

88

Many of the other chapters have presented advancements in programming
by demonstration by presenting PBD systems and their innovations. In
other words, these chapters have presented solutions. This chapter takes another
tact by discussing PBD in the context of a problem. The problem is to create a
programming system that is effective for just-in-time programming. This
chapter defines just-in-time programming, explains how it relates to other forms
of programming, and explores how creating effective just-in-time programming
systems motivates PBD research.

Just-in-time programming is the implementing of algorithms during task-time
(i.e. the time when the user is actually trying to accomplish the task to be auto-
mated) and can be characterized by a situation with the following components:

Introduction

 2 | RICHARD POTTER

• a computer user who could be either a novice user or an experienced pro-
grammer,
• a task that the user is manually accomplishing and completion of which is the
user's primary goal,
• an algorithm that will accomplish a subtask1 (i.e. part of the task) and that the
user envisioned while working on the task,
• and an attempt by the user to implement the algorithm for the purpose of more
effectively completing the task.

In short, the goal of just-in-time programming is to allow users to profit from
their task-time algorithmic insights by programming. Instead of automating
with software that was carefully designed and implemented much earlier, the
user recognizes an algorithm and then creates the software to take advantage of
it just before it is needed, hence implementing it just in time.

It is worth emphasizing that the user's task could be from any domain (e.g.
graphic drawing, scientific visualization, word processing, etc.) and that the al-
gorithm to be implemented originates with the user. Obviously, a user with
more programming experience will be able to envision a more complex algo-
rithm than a novice user. How the user comes up with the algorithm is not a
concern. Also, no hint of a solution appears in the problem statement. Any pro-
gramming system could conceivably be used for just-in-time programming, in-
cluding C, PASCAL, keyboard macros, scripting languages, or PBD. PBD will
probably be an important part of the more successful just-in-time programming
systems, but the problem statement leaves open the possibility for other solu-
tions.

Just-in-time programming research shares many of the motivations of other
PBD research. Chief among these is that users often do repetitive or algorithmic
subtasks that the computer could be doing. We call these subtasks potential
computer subtasks and call these situations opportunities for new beneficial au-
tomation. Because automating can increase productivity and user satisfaction
and at the same time reduce errors, one would expect the user to delegate poten-
tial computer subtasks to the computer. That users often do not take advantage

1The word subtask will be used throughout the chapter to emphasize the
relationship between the potentially automatable subtask and the overlying task

 JUST-IN-TIME PROGRAMMING | 3

of these opportunities motivates researching ways to improve the computer.
Just-in-time programming research and PBD research assert that easier to use
programming tools will allow users to better take advantage of opportunities for
new beneficial automation.

Just-in-time programming research, however, is focused on making program-
ming easier for a specific cross section of situations. These situations are pri-
marily defined by the user programming during task-time. In other words, the
user is attempting to write a program for a task that is already in progress.
Figure 1 summarizes the relationship between task progress and the user's ex-
penditure of effort. The expenditure of effort for just-in-time programming is
shown separate from the other task related effort. The difficulty of just-in-time
programming results from the spreading of the user's mental resources between
two activities.2 Another difficulty is that the time spent programming con-
tributes directly to total time between the start and completion of the task.

One might contrast just-in-time programming with, for lack of a better term,
task-time independent programming which is summarized in figure 2. For
an example, consider a user who is programming a HyperCard mock-up of

2See [Cypher 86] for a discussion on computer systems designed for multiple
activities.

Figure 1: Just-in-time programming
intermixes programming effort with
other task related effort.

What is not Just-in-time
Programming?

Figure 2: Task-time independent pro-
gramming separates programming ef-
fort from other task-related effort.

4 | RICHARD POTTER

a user interface in preparation for a demonstration the next day. The subtask of
the software is to help an audience visualize a proposed user interface design
during the meeting. This example would be task-time independent
programming because the software is created well before the meeting. As is the
case with many distinctions, there are examples that straddle the line between
just-in-time programming and task-time independent programming, but the dis-
cussions that follow should hold regardless.

Just-in-time programming can be contrasted with other forms of programming
by considering implications of the situation characterized in the introduction.
For example, since the algorithm to be implemented is the product of the user's
insight, it is typically simple. Thus one could contrast just-in-time programming
with programming-in-the-large. For an example, developing a full featured
word processor would not be just-in-time programming because an algorithm
that implements all the features of a word processor is too complex for one per-
son to envision.

Another implication of the situation characterized in the introduction is that the
user has the option of avoiding programming altogether because the user can
continue to manually accomplish the subtask. Thus one might contrast just-in-
time programming with, for lack of a better term, essential programming where
the necessity of programming is accepted. For example, a programmer who is
creating software that performs a communication task on a satellite does not
have the option of accomplishing the task manually. Thus the programming ef-
fort is essential.

 JUST-IN-TIME PROGRAMMING | 5

How does just-in-time programming relate to the more common PBD applica-

tion of programming for novice programmers? These two types of pro-

gramming are basically independent; programming in a given situation could

represent both, one, or neither of these. A novice programmer writing a short

program that changes all numbers in a document to a larger font would be an

example of both types of programming, assuming the user was about to make

the modifications by hand. A novice programmer writing educational software

to be used by students at a later time would be an example of a novice

programmer programming, but not just-in-time programming. I recently modi-

fied a postscript file to only print out the even pages of the document and then

the odd pages so that it would print on both sides of the paper without requiring

me to issue a separate print command for each page. This would be an example

of just-in-time programming that was not programming for the novice.

I happened upon an opportunity for just-in-time programming when Think A Subtask Suitable for Just-in-

C updated their class library to version 1.1. Before version 1.1, rectangles Time Programming

were defined with 16-bit coordinates and in version 1.1 rectangles were

defined by 32-bit coordinates. When I first compiled my software project with

the new class library, type mismatch errors occurred where my software

expected 16-bit values. Many of these were simple assignment statements. The

new class library included a utility function for converting 32-bit rectangles to

16-bit rectangles, so a typical fix involved changing a line of the form

*inset=frame; to the form longToQDRect(&frame,inset);.
Various other types of errors were found and fixed as well. The second time an
assignment of a 32-bit rectangle to a 16-bit rectangle caused an error, I recalled
that there were many such assignments throughout my program and concluded I
would, in time, be transforming many lines from assignment statements into
function calls. Each would differ only in the names of the variables and whether
each variable was a pointer or not (i.e. preceded by a "*"). For the rest of this
paper, transforming one of these lines will be called the line transformation
subtask.

To attempt to automate this subtask would have been just-in-time programming
because of the situation. This particular example also contrasts well with the
other types of programming discussed above. It would certainly not be task-

 6 | RICHARD POTTER

time independent programming because I was in the midst of modifying my
software project. The subtask was algorithmically simple so it was not pro-
gramming-in-the-large. Automating the subtask was not essential, so it was not
essential programming.

So to break this situation down into the components of just-in-time program-
ming:

The user:
myself

The task:
modifying a software project to work with an updated class library

The subtask:
changing certain lines of source code from the form {*}var1 =

{*}var2; to the form longToQDRect({&}var2,{&}var1); (i.e. the
line transformation subtask)

The algorithm:
insert leading white space
insert "longToQDRect("
if second variable name is not preceded by "*", insert "&"
insert second variable name
insert ","
if first variable name is not preceded by "*", insert "&"
insert first variable name
insert ")"
insert rest of line (the ";" and comments, if any)
delete original line.

The attempt to automate:
Actually I did not try to automate the subtask. The rest of the chapter will
explain why.

Five Obstacles 	 One reason to explicitly state a problem is so that it can be broken down into
meaningful subproblems. One way to do this is to analyze current technology,
identify common obstacles that prevent the technology from being effective, and
let the subproblems be to find ways to eliminate these obstacles. The following

 JUST-IN-TIME PROGRAMMING | 7

void TransformLine(char *s)

{

char var1[40], var2[40], rest_of_line[100];

int i,j,first_non_white;

first_non_white = 0;

while (isspace(s[first_non_white])) first_non_white++;

i = first_non_white;

j = 0;

if (s[i]!='*') var1[j++] = '&';

else i++;

while ((!isspace(s[i])) && s[i]!='=') var1[j++] = s[i++];

var1[j] = 0;

while (isspace(s[i]) || s[i]=='=') i++;

j = 0;

if (s[i]!='*') var2[j++] = '&';

else i++;

while ((!isspace(s[i])) && s[i]!=';') var2[j++] = s[i++];

var2[j] = 0;

j = 0;

while (s[i]!=0) rest_of_line[j++] = s[i++];

rest_of_line[j] = 0;

s[first_non_white] = 0;

strcat(s,"longToQDRect(");

strcat(s,var2);

strcat(s,",");

strcat(s,var1);

strcat(s,")");

strcat(s,rest_of_line);

}

Figure 3: A C algorithm that auto-
mates the line transformation subtask
assuming the line has been isolated in
a character buffer.

sections discuss five obstacles that often prevent users of current programming
systems from profiting from their algorithmic insights. Each section also dis-
cusses PBD's potential role in solving the subproblem represented by each ob-
stacle.

Effort of entering the algorithm
Given that I understood the algorithmic structure of the line transformation sub-
task, why not automate it? Since I was actually using a C programming system,
let's first explore the possibility of using it. Figure 3 shows a program in C that
can transform the line as needed, assuming that the line has been loaded into a
string (we will deal with this assumption more later). One obstacle quickly be-
comes apparent: the effort of entering the algorithm. Merely the physical effort
of typing in the 749 characters of this program would likely undermine the

 8 | RICHARD POTTER

benefits of automating this small part of the task.3 But there is also the mental
effort required to translate the algorithm into the idioms of the language and to
work out the fine details. For example, after years of programming in C, I still
must look up the strcat function in the manual to see if it copies from the
first argument to the second or vice versa.

Discussion No matter what type of programming is being done, reducing this
effort is desirable. However, the effort of entering an algorithm is particularly
important for just-in-time programming because the subtasks appropriate for
just-in-time programming are typically special purpose needs that can not be as
widely applied as functionality that is more generic. The line transformation
task is a good example of this because once I finished updating the software
project, I had no need for this particular functionality. When the benefits per
programming effort are modest, only minimal effort can be expended towards
entering the algorithm before the venture becomes pointless. If the user's task is
creative or involves problem solving, then the user can scarcely afford to
expend mental effort for modest gains. Of course, there are times when the pay-
offs of just-in-time programming are large enough that the effort to enter the al-
gorithm is not as crucial. But there are enough opportunities for modest payoffs
that finding ways to reduce the effort required to enter the algorithm is an
important subproblem to solve.

Sometimes creating new beneficial automation by programming pays off be-
cause the user can apply the automation many times in the future. A script that
automatically dials a remote computer and logs the user into their account would
be a good example. Here the distinction between just-in-time programming and
task-time independent programming is blurred. Strictly speaking, the pro-
gramming effort is expended at a time independent of when the benefits of the
automation are received. However, the user is likely to automate this task at a
time when they are about to dial in to the remote computer manually, that is,
when the desirability of automating the subtask comes to mind. So although the
user could set aside some time and do task-time independent programming, psy-
chologically the task-time aspects of whatever the user is doing are likely to im-

3Shortening variable names and removing extra blanks can reduce this program
to 438 characters.

 JUST-IN-TIME PROGRAMMING | 9

pact the programming process. In this sense, much of the special concerns of
just-in-time programming still hold.

Reducing this effort is less important for programming-in-the-large because the
effort required to manage the complexity of a large software project tends to
overshadow the effort required to enter the algorithm. In fact, programming
languages such as Ada even increase the effort of entering the algorithm by re-
quiring extra notation for modularizing the code. Such notation does not con-
tribute directly to functionality, but is appropriate for programming-in-the-large
because complexity is such an overriding concern.

Just-in-time programming accentuates the mental effort required to enter the al-
gorithm because users must switch their mind-sets from the task domain to the
programming domain as illustrated in figure 1. After the algorithm has been
implemented, users must also expend effort to return their mind-sets to the task
domain. Users might expend effort trying not to divert too much attention to the
programming effort, sometimes trying to keep more in their short term memory
than is reasonable. For creative tasks, this diversion is especially costly. In con-
trast, users who are programming independently of task time can change their
mind-set over a longer period of time.

Therefore when minimizing the effort of entering the algorithm, it is important
to minimize distraction from the task. One of the main sources of effort and
distraction is the number of special programming concepts. For example, writ-
ing the C algorithm in figure 3 required remembering how strings are allocated
and referenced. On this point, just-in-time programming and programming for
novice programmers share similar goals because a programming system for
novice programmers should require the understanding of as few new concepts
as possible. In cases where a just-in-time programming system is being de-
signed specifically for novice programmers, the same would apply.

The idea of just-in-time programming, however, is not limited to novice pro-
grammers. For expert programmers, whether a concept is familiar to a nonpro-
grammer is not the crucial factor. Instead, the programming system should re-
quire the user to understand only concepts that can be ingrained and that the
user can apply fluently. Therefore, part of the research agenda of just-in-time
programming should be to identify key skills that, if ingrained, will allow a user
to more effectively write programs just in time. These skills could be anything

 10 | RICHARD POTTER

Figure 4: This Quickeys macro can
partially automate the line transforma-
tion subtask. The number of keystrokes
required to enter the macro and the vi-
sual state of the editor are shown.

keystroke count

1

14

1

1

1

1

1

1

1

1

1

2

1

1

1

2

2

33 keystrokes

keystroke/step state of editor

(start recording)
longToQDRect(&

-

- X

-

,&

- V

)

(stop recording)
(assign invocation)

(accept and save)

from something classic like regular expressions to some new esoteric program-
ming paradigm. It seems clear that, at least for the foreseeable future, users will
have to understand the basic concepts of conditionals and iteration.

Solution directions Many techniques including code templates, code reuse, do-
main specific functionality, subroutines, copy/paste, and on-line documentation
can help reduce the effort required to enter an algorithm. PBD helps reduce this
effort by allowing users to enter the algorithm using the same interface as they
would normally use to work the subtask manually. This helps reduce both the
physical effort and the mental effort because the user is often well practiced at
using this interface. Since the user would use the same user interface to work
the subtask manually, the artifacts are already in short term memory and pro-
gramming with them is likely to be less distracting than with an off-line pro-
gramming language. The effort to enter the algorithm is also reduced because
user interfaces are usually optimized to the task.

For a simple example of how PBD can reduce the effort of entering an algo-
rithm, consider one partial solution to the line transformation subtask. If the
user first places the cursor to the left of the first variable in the line to be trans-

 JUST-IN-TIME PROGRAMMING | 11

formed and neither variable is a pointer, then the Quickeys macro shown in fig-
ure 4 will transform the line as required. The macro also assumes that exactly
three characters (" = ") separate the two variable names. Only the 33 key-
presses shown in figure 4 are required to implement the macro.4 The visual
feedback of the editor also helps reduce the mental effort by showing intermedi-
ate results.

Limited computational generality
Why illustrate the virtues of the keyboard macro by only partially automating
the line transformation subtask? The reason is that the subtask requires condi-
tional logic to decide whether each variable is a pointer or not. Keyboard
macros only record straight-line algorithms and thus are not able to fully auto-
mate this subtask.5 This illustrates an obstacle that users face when program-
ming just in time: the programming systems that make it easy to enter their al-
gorithm can often only implement algorithms of limited computational general-
ity.

Discussion It is important for a just-in-time programming system to have full
Turing-complete computational generality because there is no way to predict
which of the vast array of algorithms the user might envision. Unfortunately
computational generality is not one of PBD's strengths. Halbert recognized this
when implementing SmallStar and concluded that control structures were better
created by editing a static representation of the program than by demonstration
[Halbert 84]. Others have used inference to generalize straight-line demonstra-

4The C algorithm in figure 3 can only be shortened to 623 characters by making
the same assumptions as this macro.

5This is true of keyboard macros in general. Quickeys has an extension facility
so there is a possibility that someone has written an extension that allows it to
fully automate this subtask. Interestingly, it is actually possible to automate this
subtask in the Emacs text editor using only straight line macros by leaning
heavily on Emacs' underlying functionality. The trick is to narrow the editing
region down to the current line and perform a series of clever search and
replaces. The solution works but thinking of it takes some effort. Conditional
logic would be far more straight forward.

 12 | RICHARD POTTER

tions into procedures with control structures. Cypher's Eager and Myers'
Peridot used domain knowledge to infer procedures with control structures
solely from straight-line demonstrations [EAGER CHAPTER, PERIDOT
CHAPTER]. The computational generality of these systems, however, was
limited by limited domain knowledge.

Solution directions In order for a PBD to be used for just-in-time program-
ming, it will have to be integrated with other techniques to give full computa-
tional generality. Interesting directions include giving separate examples for
each path of the algorithm as in Tinker [TINKER CHAPTER], or a combination
of multiple demonstrations, inferencing, and special instructions from the user
as in Metamouse [METAMOUSE CHAPTER].

Effort of invoking algorithm
As stated previously, the effort to enter an algorithm is less of an obstacle when
the benefits of automating are large. So for the sake of argument, assume that I
knew there would be hundreds of lines needing to be transformed and decided
to automate the task using C. Limited computational generality would not be an
obstacle with C. Are there other obstacles?

When the compiler detected an error in my software project, it would load the
file containing the error into its text editor and highlight the erroneous line. To
take advantage of the line transformation program, I would first have to judge if
it was one of the simple type mismatch errors that could be fixed by the simple
line transformation. If so, I would then invoke the C implementation on the
specific line. But how would I do that? One possibility would be to mark the
line some special way, perhaps by placing a "*" at the beginning of the line, and
then save the file out to disk. Then I could run the C program which would then
prompt me for the name of the file with the incorrect line. The C program
would then scan through the file for a line that started with a "*" and apply the
transformation to it. But this would be silly. The effort to invoke the algorithm
would undermine the benefits and would be yet another obstacle to automating
this subtask.

Discussion As in this case, a subtask appropriate for just-in-time programming
typically applies to part of a larger document. Thus, users must be able to im-
plement the algorithm such that they can specify which part of the document
should be processed when they invoke the algorithm. It is important that they

 JUST-IN-TIME PROGRAMMING | 13

be able to do this with ease because the benefits to be obtained by automating
can be easily negated by the invocation effort. Unlike the effort to enter the
algorithm, the effort to invoke the algorithm can not be amortized over the life
of the new beneficial automation. The effort must be small in comparison with
the benefit received from each invocation of the algorithm. When the payoffs
per invocation are larger this obstacle is not as crucial, but enough opportunities
for modest benefits exist that it is important to reduce the effort required to
invoke algorithms implemented just in time.

For an example of how crucial the ease of invocation can be towards making au-
tomation beneficial, consider the feature on many word processors that allows a
user to select a word simply by double clicking on it. The word processor auto-
matically does the tedious subtask of extending the selection out to the word
boundaries. Identifying these word boundaries manually is a simple subtask, so
not much benefit is received each time the feature is used. However, words are
selected so commonly that, over time, the feature is very beneficial. Another in-
vocation strategy could easily undermine this benefit. For example, even requir-
ing the user to click on the word and then select the feature from a pull down
menu could require too much effort.

As the previous example implies, this obstacle is not unique to just-in-time pro-
gramming. Because the effort to invoke the algorithm can not be amortized, any
programming endeavor that produces interactive software needs to pay special
attention to this obstacle. The main difference for just-in-time programming is
that the user can not amortize the effort to create the invocation scheme as
much.

Solution directions How should just-in-time programming make it easy to in-
voke algorithms? One clue is strongly implied by the hypothetical consideration
of C for automating the line transformation subtask: users should be able to
implement their algorithms such that they can perform the subtask without hav-
ing to save their documents to disk. Instead their algorithms should be able to
process data in its present form which is usually internal to some application.
Thus just-in-time programming systems should allow users to process data
within their applications. In addition, users should be able to use the applica-
tion's data selection mechanisms to indicate what part of their document to pro-
cess. This would enable users to work manually, apply a newly implemented al-

 14 | RICHARD POTTER

gorithm to the data, and continue to work manually without the overhead of sav-
ing the data to a file. Processing data within applications is central to PBD, so it
already goes far to easing the effort to invoke the algorithm.

Beyond automating within applications, just-in-time programming systems
should allow the user to choose among various invocation strategies. Standard
invocations such as menu selections and keypresses should be supported. The
ability to create more refined invocations, like double clicking on a an object to
apply some automation to it, would be important for making some highly inter-
active automation worth creating. PBD techniques could possibly be used to
have the fact that the user has started doing the subtask be what triggers the au-
tomation to be invoked. David Maulsby's Turvy and Metamouse give hints of
how this might work [TURVY CHAPTER, METAMOUSE CHAPTER].

Inaccessible data and operators
So far we have seen several reasons to want to process data while it resides
within an application. One is to make algorithms easier to enter by allowing the
user to demonstration the algorithm through the user interface of the application.
Another is that invocations can be made easier if the data is processed within the
application. The Quickeys solution in figure 4 had these advantages, but it only
partially automated the subtask. No other programming system on my computer
(including APL, C, Lisp, Scheme, or HyperTalk) can automate within Think C's
editor because of the fourth obstacle, inaccessible data and operators. In this
case, this obstacle undermines the modest benefits of automating the subtask. If
the benefits per invocation were greater, then accessing the data independently
of the application by saving the document to a file might have made creating the
new automation worthwhile.

In other cases, limited data access can take the simplest algorithms and render
them impossible to implement. Consider the example discussed in [TRIGGERS
CHAPTER REFERENCE] of automating the wrapping of a text field with a
properly sized rounded rectangle. The algorithm to automate this task is trivial
when stated in terms of the text field's and the rounded rectangle's properties of
location, length and width. The central part of the algorithm is to set the
rounded rectangle's location a bit above and to the left of the text field's lo-
cation, and set the rounded rectangle's length and width to be a bit larger.
Automating this task independently of MacDraw II would involve extracting

 JUST-IN-TIME PROGRAMMING | 15

these properties from MacDraw II's coded file format, which would be very
difficult. Also, the user's algorithm may be based on special functionality
provided by the application such as, in this case, the ability to create rounded
rectangles. Just-in-time programming systems should therefore be able to
access properties from applications and invoke the operators provided by appli-
cations.

Sometimes an opportunity for new beneficial automation involves not so much
the processing of data, but rather the repetitive manipulation of an application's
user interface artifacts. For example, the user may wish to automate the tog-
gling between two window arrangements. The only way a programming system
can automate this is to access the state of the user interface and manipulate its
components.

Discussion Inaccessible data and operators is a particularly common obstacle
for just-in-time programming because users must make do with whatever form
their data is in when they envision the algorithm. Usually this data exists within
an application. In contrast, task-time independent programming often allows
the user to plan what form the data will be in when the automation is eventually
used. Many programming efforts, like games or educational software, are
closed systems where the programmer can choose the format of the data to be
whatever makes their programming effort easiest.

Solution directions In order for a programming system to access the data and
operators of an application, there must be a communication protocol that both
the programming system and the application follow. One way to effect this
protocol is to build the programming system into the application. This strategy,
however, limits the data access to the one application, so inaccessible data and
operators would still be an obstacle when the user's algorithm involved multiple
applications. Therefore just-in-time programming systems should make use of
specially established interapplication protocols like Apple Events [Apple 91].

Sometimes programming systems can overcome the inaccessible data and opera-
tors obstacle by using protocols established for reasons other than interapplica-
tion communication. For example, the Quickeys solution uses the computer's
keyboard input stream as a protocol to process data in the editor application.
The Triggers chapter discusses an extension to this technique where pixel data
from the computer display can be used to gain a significant degree data access

 16 | RICHARD POTTER

from any application. PBD plays a large role in making this extension possible
because the algorithms implemented using these techniques sometimes contain
large bitmap constants. Entering these bitmaps would be unwieldy if they could
not be specified by demonstration.

Risk
The fifth obstacle is the risk that the automation will fail, be ineffective, or pro-
duce unintended results. Consider the risks of automating the line transforma-
tion subtask. There are many possible scenarios. In the best case the algorithm
could have been entered almost effortlessly, and as each occurrence of a line
needing the simple transformation was flagged by the compiler, I could have
easily invoked the algorithm somehow. To my surprise, perhaps more chances
to use the new automation occurred than were anticipated, making the automa-
tion pay off more than expected.

But there are many other possible scenarios. The algorithm could have taken a
long time to enter, perhaps because some special purpose function had to be
looked up in a manual. A mistake in the implementation might have caused the
new (not beneficial) automation to destroy part of the source file, perhaps too
quickly to be noticed. Limited data access could have turned the simple algo-
rithm into one that was impossible to implement. I was not sure exactly how
many more assignments of 32-bit rectangles to 16-bit rectangles were left in my
software project, and thus there may have been too few to make the program-
ming effort worthwhile. Unforeseen special cases may have made the envi-
sioned algorithm simply wrong.

A user who is considering a just-in-time programming effort has the option of
continuing to work manually. Given the many adverse scenarios, it is not sur-
prising that the user would choose this option. Thus just-in-time programming
systems often fail because the user chooses not to use it.

Risk was the main reason I chose not to automate the line transformation sub-
task. The partial solution using keyboard macros was the only one worth con-
sidering because it was the only solution that did not require saving the file to
disk. In the past, my attempts to use keyboard macros have often been thwarted
by unforeseen special cases, the difficulty of accommodating special cases into
an already existing macro, and the uncontrollable speed of macros that make it
difficult to verify that the macro works correctly. In retrospect, a keyboard

 JUST-IN-TIME PROGRAMMING | 17

macro would have been worthwhile and would have prevented a few recompiles
caused by typos in my manual transforming of the lines. However at the time,
the apparent risks convinced me to play it safe and transform the lines manually.

Discussion Certainly all programming involves risk. The risks of just-in-time
programming are notable on two accounts. One is that the time and effort spent
implementing the algorithm relate directly to the success of the venture. For ex-
ample, any extra time or frustration involved in automating the line transforma-
tion subtask would have quickly eliminated the potential benefits. In contrast,
task-time independent programming efforts often relate only indirectly to suc-
cess. For example, say a user is programming an animated demo for a five-
minute presentation. If the demo take two hours longer to implement than ex-
pected, the presentation the next day can still be a success.

But the main reason risk affects just-in-time programming so strongly is that it
is easy for users to choose to continue to work manually and avoid the risk. In
contrast, essential programming requires users to make the best of what their
programming systems have to offer. Users still have to assume whatever risks
are present, but the programming system will not fail for lack of use.

Risk is caused, in part, by the users' uncertainty about how the other four obsta-
cles will affect their attempts to automate. Thus, one way to reduce the risk is to
work towards eliminating these four obstacles. For example, if entering the al-
gorithm were effortless, there would be no risk in taking that step.
Unfortunately, entirely eliminating these obstacles is very unlikely. In addition,
users will still have to assume the risk that their algorithms might not do as ex-
pected. Thus, it is important to explicitly consider techniques that reduce the
risks of just-in-time programming.

Solution directions One approach to addressing risk is to make it so that the
user can accurately judge the effort required to implement the algorithm and ac-
curately judge the benefits. Simplicity and visibility are two attributes of a pro-
gramming system that would contribute to this approach. When users can con-
fidently judge the benefits will be greater then the efforts, then they can proceed
to profit from using the just-in-time programming system and the system will
not fail from lack of use. The limitation of this approach is that merely judging
the risks is a risk in itself because the user must expend some mental effort.
Because it is unlikely that this effort can be eliminated entirely, the user will

Figure 5: An algorithm that will con-
vert a folder full of MacWrite II files to
pure ASCII.

18 | RICHARD POTTER

step 1-read in a list of the file names in the folder containing the chapters
step 2-remove any file name from the list that contains the string "backup"
step 3-while the list is not empty repeat steps 4-9

step 4-have MacWrite II open the file with the name appearing first in the list
step 5-invoke MacWrite II's "Save As..." feature:

step 6-select Text Only option
step 7-append "(text)" to the file name

step 8-close the document
step 9-remove first file name from the list

have good reason to simply continue working the task manually without ever
giving the opportunity to use just-in-time programming a second thought. Other
techniques need to be considered.

Another approach to reducing risk is to enable users to profit from partial im-
plementations of their algorithms. This would help alleviate the risk that an ob-
stacle might prevent the implementing of part of the algorithm, render the whole
algorithm useless, and waste any effort already expended. Users should be able
to implement and profit from parts of their algorithms without requiring the en-
tire algorithm to work flawlessly.

For example, assume a user has 20 book chapters saved as a separate MacWrite
II files in a folder, and that a colleague requests a pure ASCII copy of each
chapter. To manually convert each chapter to pure ASCII, the user would have
to load its file into the MacWrite II, select the Text Only option, and save it
back out to disk using a different file name. Assume files with the word
"backup" in the file name should not be converted. The simple algorithm in
figure 5 could select all 20 chapters in turn and carry out these repetitive
actions. If the user were able to implement this algorithm, the tedium of
keeping track of which files have been converted and the tedium of the repet-
itive actions would be avoided.

If the entire algorithm could be implemented confidently, easily, and flawlessly,
then risk would not be an issue. Unfortunately, any step in the algorithm could
cause potential problems. What if after putting some effort into the algorithm,
the user discovers that only a subset of the nine steps can be implemented? For
example, what if step number 7 could not be implemented because the user's
programming system could not invoke the operator that selects the Text Only
operator? The partial implementation can still potentially be beneficial if the

 JUST-IN-TIME PROGRAMMING | 19

user can manually do the steps that prove difficult to implement. For example,
the algorithm could invoke the "Save As..." dialog box and pause while the user
selects Text Only manually. The partial implementation would still be benefi-
cial because it would take care of the tedium of keeping track of which files
have been converted and a great majority of the other actions.

For step number 7, this strategy is easy to imagine because the application's ex-
isting user interface can allow the user to carry out the hard to implement action
manually. But what if step number 2 is too difficult to implement because the
user's programming system has no built-in test for substrings? In this case the
list is in the programming system's execution environment, not the application.
If the user is to manually accomplish this step, the programming system must
have an existing user interface that allows the user to manipulate the execution
environment. Some interactive programming systems and debuggers allow
users to modify the execution environment during run-time, but few allow data
to be manipulated easily enough for the user to do real work. Also, the more
that control has to pass between the user and their implementation, the more
essential it will be that flexible invocation schemes are possible.

Essentially the user's risk is that the manual method might be more effective
than implementing the algorithm. Therefore, another approach to addressing
risk is to allow the user to pursue both alternatives in parallel. In theory, the risk
of attempting to automate the subtask would be eliminated because if un-
foreseen difficulties make the programming effort ineffective, then the user can
fall back on the manual method already underway.

In practice, this approach would probably not eliminate risk, but it could reduce
risk greatly. PBD could play a large part in realizing this approach because it
allows the user to implement algorithms by demonstrating on their actual task
data. In other words, the user can be programming and manually accomplishing
the subtask simultaneously. For example, recording the keyboard in figure 4 ac-
tually transforms one of the lines, so progress towards completing the overall
task is hindered minimally.

This technique has its greatest potential when mixed with history based tech-
niques. For example, Allen Cypher's system Eager records the user's actions
into an event history [EAGER CHAPTER]. When Eager detects the user doing
repetitive actions, it indicates this to the user by highlighting what it expects the

Conclusion

20 | RICHARD POTTER

user to select next. For certain classes of algorithms, the user can implement an
algorithm at almost no risk because the user takes no special actions. The deci-
sion of whether to invoke the algorithm still involves some risk because the ex-
act behavior of some algorithms is difficult to predict. Therefore additional
techniques such as undo and slow motion execution will have to be extended
and refined.

Is creating a programming system that is effective for just-in-time programming
an interesting research problem? The previous sections clearly show that it has
not been solved already, so it meets this criterion. A second criterion for inter-
esting research is that there be some indication that solutions are possible. The
previous section touched on several promising research directions, many of
which are based on PBD. A third, important criterion for interesting research is
that it lead to tangible benefits. The benefits of improved just-in-time pro-
gramming systems would be to allow users to better automate repetitive sub-
tasks that arise from their unique circumstances. The line transformation sub-
task was one such example where automation would have led to significant
benefit. There will always be subtasks like this that slip through the prepack-
aged functionality of applications because they result from the interactions of
users with the complexities of the real world. Task-time is often the only pos-
sible time to implement the algorithms that can automate these subtasks.

But is it necessary to focus the research problem on such a narrow slice of pro-
gramming to make automating these subtasks practical? After all, many of the
obstacles facing just-in-time programming also affect other types of program-
ming; it is possible that researching other types of programming will produce
effective just-in-time programming systems as a side effect. Are there reasons
for researching just-in-time programming specifically?

One reason is that a user must accomplish all of the following during task-time:
assess risk, enter the algorithm, design the invocation scheme, solve data access
problems, invoke the algorithm, verify correct program behavior, and resume
work on the overlying task. Thus it is crucial that techniques that support these
activities be refined to a degree that other forms of research are unlikely to
achieve. For example, research that concentrates on programming-in-the-large
is unlikely to adequately reduce the effort required to input the algorithm when

 JUST-IN-TIME PROGRAMMING | 21

managing program complexity is its overriding concern. Research that as-
sumes essential programming is unlikely consider techniques that reduce
risk by enabling productive use of partially debugged programs. Research
that assumes task-time independent programming is unlikely to recognize
that programming may not be the user's primary concern. Thus it is
unlikely to give adequate emphasis to minimizing distractions from the
user's primary task. It is also unlikely to motivate data and operator access
that is flexible enough to process the user's data wherever it may be when
the opportunity to apply just-in-time programming arises.

Another reason is there are solutions that are appropriate for just-in-time
programming but are not necessarily appropriate for other types of
programming. For example, the pixel based techniques of Triggers
[TRIGGERS CHAPTER] would not be appropriate for software that must
run in the background. The technique of programming and accomplishing
the task at the same time discussed in the risk section does not make sense
for programmers who are writing software for other people's use.

By recognizing the special nature of just-in-time programming and by

References for Alan

[Apple 91] Apple Computer, Inc.,
<Inside Macintosh, Volume VI>
Addison Wesley, Reading,
Massachusetts, 1991.

[Cypher 86] Cypher A., "The Structure
of Users' Activities," <User Centered
Design>, Lawrence Erlbaum
Associates, Hillsdale, New Jersey,
1986.

[Halbert 84] Halbert D.,
"Programming by Example," Ph.D.
Thesis, Department of Computer
Science, University of California at
Berkeley , 1984.

addressing the limitations of current programming systems head-on, much
research progress should result. The five obstacles provide a set of subproblems
that can be used to focus multiple avenues of research. Researchers should be
careful not to accentuate one obstacle in the elimination of another; it only takes
one to prevent a just-in-time programming system from being effective. It is
crucial that a just-in-time programming system address risk because it is
probably impossible to create a programming system where the user's every
attempt at creating new automation will be profitable. The goal should be to
create a programming system where a user can know that in the worse case at-
tempting just-in-time programming will not hinder progress towards completing
the task. Then the user will be able to confidently use the full extent of the
programming system to profit from their algorithmic insights.

