

Technology, Social Context, and Milestone \#2

9/29/2008

NextLab I, F'08, L5 (Luis Sarmenta) slide 1

Agenda

- Announcements
- Quick Overview of Mobile Technology
- More on Milestone \#2
- Social and Cultural Issues

Announcements

NextLab Technical Sessions (with Luis Sarmenta)

- Weekly on Tuesdays 3:30-5pm
- Open consultations, 3:30pm-5pm
- Come to share your technical problems / progress
- Get advice and feedback from Luis and other teams
- Common time, 4pm-5pm
- Time for "lectures" on common-interest topics
- More open consultations
- Location TBD (check your emails)
- Software Dev Managers should go
- not absolutely required, but a good way to keep on track
- But also open to everyone interested in more technical discussions

Team Web Resources

- Each Team should have these external resources:
- External blog (see under "Projects")
- Includes Emerson videos, Milestone presentations, etc.
- Public can view and comment
- External Technical Documentation
- Part of NextLab Wiki
- documentation, notes, and "stable" versions meant for public use
- We can also provide you these internal resources:
- SVN repository
- internal forum
- Internal wiki or Trac

Milestone \#3: System Design (Oct. 20)

- What are the components of the system?
- block diagram
- How is it used?
- Use-cases
- User interfaces
- How does it work?
- What happens in different use cases
- What data moves where?
- What computation needs to happen?
- Any potential difficulties?
- e.g., certain assumed functionality not being available
- Initial implementation results
- Progress report
- Crude quick demo, if possible

Quick Overview of Mobile Technologies

Mobile Phone Capabilities

- Network Technologies
- GSM vs. CDMA
- Voice
- Person-to-Person
- IVR (interactive voice response)
- Messaging
- Text Messaging (SMS)
- Multimedia Messaging (MMS)
- Email
- IM
- Internet / Web access
- 3G, GPRS, WiFi, WiMax
- Phone-side Applications
- J2ME, Windows Mobile, Symbian, Python on Symbian, Android, iPhone, BREW, etc.
- Phone-side Networking
- Bluetooth, IR, WiFi
- Location
- GPS and AGPS
- detecting cell towers from phone
- operator-provided
- Camera
- For photos and videos
- TV Output
- e.g., Nokia N95 / N82
- NFC
- as tag / card
- as reader
- Other sensors
- Accelerometer
- Attaching other devices
- using analog I/O
- SIM card
- SIM toolkit text-based menus
- Micropayments
- Bank-based
- airtime credit-based

Milestone \#2: Preliminary Needs and Context Assessment

Milestone \#2 (Oct. 8)

- Preliminary Needs and Context Assessment
- What does your partner think about your proposed solution?
- present your plan (e.g., Milestone \#1 report and other materials) to your project partner (on Sept. 24, regardless of whether your are called)
- Get their feedback
- Does this affect your proposal?
- On-the-ground needs assessment
- What questions do you want to ask your target users?
- (You don't need to have answers right now, but show your questions.)

Social Context

- See Rachel Hall-Clifford's talk
- Contact her for feedback on needs assessments surveys
- Who generated your idea and why?
- Technologically interesting? Perceived need?
- Does your target population NEED your
- product or intervention? Who determines this?
- Does your target population WANT your product?
- How open are you to changing your idea or product to correspond with local input?

Technology

- Cell-phone signal in your target locations?
- Do the target users have cellphones?
- How many have their own cellphones?
- How many have access to one (e.g., village phone)?
- Do people who have stores/shops/businesses, government offices, hospitals/medical facilities, schools, etc. have cellphones?
- How about PCs?
- Do individuals have PCs? Laptops?
- Internet? Dialup or High-Speed?
- How about public offices (gov't, hospitals, etc.)?
- How about internet cafes?

Economics of Technology

- How much?
- Cheap phones (contract vs. no-contract)
- Cheap cameraphones
- SMS and MMS sending
- voice
- Internet / Web access (GPRS \& 3G)
- value-added services
- Do you pay to receive?
- What percentage of a family's income is spent on cellphone costs?
- What is the average income of a family?

User Behavior

- How literate are your target users?
- How often do people use their cellphones and what for?
- (Text, chatting with relatives, conducting business, finding out if roads are blocked etc.)
- What type of people are generally using cellphones?
- (Women, children, rich, middle-income, poor?)
- What special/advanced uses people give their cellphones?
- paying for goods? Person-to-Person payments? Websurfing? Gaining local information?
- Note: there's a difference between what services are available and what services people actually use!
- Where do they go to top cellphones up?
- How often have people had cellphones stolen?
- Are people afraid of having their cellphones stolen?
- Do people pay for goods and services with their phones?
- (If so, what? and where? Why do they not use real cash?)
- Do people find them difficult/easy to use?

More Questions

- Think of the largest piece of information you might want to send (image, video, form).
- How long does it take to send it?
- How much does it cost?
- Details on other modes of use.
- What they do currently?
- What social factors might prevent them from using the phone?
- In what situations is it rude to use a phone?
- How do people feel about you taking their picture with a cellphone?
- Does carrying a cellphone make you feel more successful?
- Do you share a phone or ever lend you phone to anyone If so, for how long?
- (This is important if the phone is used as an identifier, or carries private info).

General Tips

- "High-Tech" / not-so-cheap solutions may be OK if solution/application is such that such solutions only need to be used by a few, and not by the random public
- "Target users" are NOT always the same as "beneficiaries"
- e.g., apps to be used by health workers for data collection / surveying, in a context where funding is available to provide workers with higher-end smartphones
- If solution is meant to be used by end-users themselves, then need to support lowest common denominator
- More challenging, but also more potential for scalability and impact

Again ...

- What is the problem wefre trying to solve?
- How do we know that's a real problem?
- Does this problem really need a technological solution?
- Could this problem be solved without any digital technology?

Don't Forget

- Be aware of all these things and try to gather as much information as you can from the partner before and while you are designing your system
- You will almost certainly make mistakes
- The important thing is to be alert and be able to adapt and learn (4Fail early and Fail often")

A Near Miss: The Importance of Context in a Public Health Informatics Project in a New Zealand Case Study

Stewart Wells and Chris Bullen

Journal of the American Medical Informatics Association
Volume 15 Number 5
September / October 2008

Health Informatics Project in New Zealand

- Management of Hepatitis B
- Maori, Asian, and Pacific Islander populations have very high rates of HBV (5-13\%) vs. European New Zealanders (0.4\%)
- Health Informatics system
- Help with screening
- Lab results
- claims / payments
- Keep track of immunization
- Etc.

Problems

- Premature implementation
- Start of project was delayed because of need to establish ethnically representative governance
- Left insufficient time to develop software
- Low Primary Care IT capacity
- Designers over-estimated user skill
- interviewed experts
- Limited availability of terminals, printers, phones
- PCIS modification difficulties
- Software maintenance and compatibility issues
- Identity Management
- Problems with Unique Patient Identifiers
- Different ways to write name leads to different UPI \rightarrow rejected claims \rightarrow backlog
- Poor Design
- batch rejection of claims if one claim fails
- Limited user access to participant tracking system

Solutions

- Standardized naming conventions
- Individual claim rejection (not batch)
- Access enabled via website
- Barcode specimen identification
- Data matching requirements significantly relaxed
- Dedicated IT support staff from primary care nursing backgrounds recruited to liaise with software developers, and to provide on-site IT support

Context behind problems

- Too much dependence on UPI
- Turned out not to be essential
- Relaxed system still worked
- Primary Care Environment
- Mostly private practices and morale was down
- A lot of primary care providers did not invest in IT equipment
- Also, not computer-saavy
- Problem was designers interviewed computer-saavy "experts"
- Political Context
- Delays due to political needs (e.g., ethnically representative governance)
- Also ... negative results (or fear of negative results) of solutions can shut down project due to political implications
- Poor Testing of Software
- Conclusion ... be aware of your context

Stages of Design in Technology for Global Development

Jonathan Donner, Rikin Gandhi, Paul Javid, Indrani Medhi, Aishwarya Ratan, Kentaro Toyama, Rajesh Veeraraghavan

Computer, vol. 41, 2008, pp. 34-41.

Stages of Design in Technology for Global Development

- Read this paper, and read Mike Gordon's slides
- Five Stages
- Wonder
- Exuberance
- Realization
- Adaption
- Identification
- Several Examples
- Watch yourself go through these stages!
- "Fail early, fail often"

Other Papers Today

- John C. Caldwell, "Cultural and Social Factors Influencing Mortality Levels in Developing Countries," The ANNALS of the American Academy of Political and Social Science 510, no. 1 (July 1, 1990): 44-59.
- Robert A. Malkin, "Design of Health Care Technologies for the Developing World," Annual Review of Biomedical Engineering 9 (July 25, 2007): 567-587.
) Dos.

