mas.s62

lecture 14

lightning network
and cross chain swaps
2018-04-02
Tadge Dryja

today

payment channels

recap
optimizations: key addition, hash trees
cross chain swaps
revokable tx

Commit Tx (held by Alice)	
input	output
fund txid Bob's signature	Alice key \& 100 blocks or AliceR \& Bob key 2 coins
	Bob address 8 coins

revokable tx

Commit Tx (held by Bob)	
input	output
fund txid Alice's signature	Alice address 2 coins
	Bob key \& 100 blocks or Alice \& BobR key 8 coins

add and delete states

```
Fund txout A\&B 10
```


In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

add and delete states

```
Fund txout A\&B 10
```


In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

add and delete states

In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states

add and delete states

In Lightning, states are added sequentially, and validity is enforced by revealing private keys to previous states
reveal to revoke
Either party broadcasts \& has to wait Alice gives Bob the AliceR privKey Bob gives Alice the BobR privKey Now if they broadcast the counterparty can take all funds while they wait!

preimage or private key

 KeyA \&\& time|| (KeyB \&\& KeyC)
optimizations here?
preimage or private key KeyA \&\& time
|| (KeyB \&\& KeyC)
KeyC could be a hash/preimage pair, 20 bytes instead of ~70

Even smaller?

Adding keys

Add KeyB and KeyC
B + C = R
what's the private key for R?

Adding keys

Add KeyB and KeyC
B + C = R
what's the private key for D?
DG + cG = ra
$(b+c) G=r G$
sum of private keys works
reduced script
KeyD || KeyA \&\& time
opcodes:
OP_IF KeyR OP_ELSE
<delay> OP_CHECKSEQUENCEVERIFY
OP_DROP KeyA OP_ENDIF OP_CHECKSIG
reduced script stack: 1 SigR

OP_IF KeyR OP_ELSE

<delay> OP_CHECKSEQUENCEVERIFY
OP_DROP KeyA OP_ENDIF OP_CHECKSIG
reduced script stack: 0 SigA

OP_IF KeyR OP_ELSE
 <delay> OP_CHECKSEQUENCEVERIFY

OP_DROP KeyA OP_ENDIF OP_CHECKSIG
reveal key, revoke state need to keep track of old secrets one for each state

32 bytes each... not great for scaling

hash tree

reveal secrets 1 at a time store only log(n) secrets
recompute any received secret

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

Elkrem

left child: append 0, hash
right child: append 1, hash

intermission
0x7f sec to stretch

cross chain

there are altcoins

most of them (used to) work like Bitcoin, as they just copied the whole codebase on github
(see e.g. coingen.io)
some recent coins very different

cross chain

people trade altcoins for bitcoins
they even trade altcoins for altcoins
how to trade? use "exchanges"

coin exchanges

 exchange model:give us all your coins
post orders on our site to swap ask for your coins back

coin exchanges

 exchange model:give us all your coins
(this part works fine)
post orders on our site to swap ask for your coins back

coin exchanges

 exchange model:give us all your coins
post orders on our site to swap ask for your coins back
(here's where the model tends to fail)

cross-chain swaps

no custody

you get coinA iff I get coinB use HTLCs just like in lightning network
channels are on different networks

Preimage determines who spends

HTLC construction

$H=\operatorname{hash}(R)$

HTLC construction

H

HTLC forwarding

HTLC:

HTLC forwarding

HTLC clearing

HTLC clearing

HTLC clearing

HTLC clearing

cross chain swaps

H can be revealed on either chain, so both parties need to watch both blockchains

They have channels on each chain so that makes sense

Receiver doesn't need to be initiator, but probably will be

how to trade

good for trade execution, but what about discovery?
post orders on blockchain?
non-binding, frontrunning, non-scalable
how to trade multiple models:
central orderbook \& counterparty
exchange is one side of every trade and keeps the spread
similar centralization to current custodial model, but less risk
how to trade multiple models:
central orderbook, multiple counterparties
connecting to many counterparties
is costly
how to enforce trade execution?
how to trade multiple models:
distributed orderbook
how to ensure fairness?
how to enforce trade execution?
scalability of orders?

cross-chain swaps

basic idea works, but still many unsolved questions
further research required people working on this here! (ask)

MIT OpenCourseWare
https://ocw.mit.edu/

MAS.S62 Cryptocurrency Engineering and Design
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

